The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit...The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit (MSD) floating-point division using Newton-Raphson method on the system of ternary optical computer (TOC) is studied. Since the addition of MSD floating-point is carry-free and the digit width of the system of TOC is large, it is easy to deal with the enough wide data and transform the division operation into multiplication and addition operations. And using data scan and truncation the problem of digits expansion is effectively solved in the range of error limit. The division gets the good results and the efficiency is high. The instance of MSD floating-point division shows that the method is feasible.展开更多
考虑到飞机结构的多部位损伤(MSD,Multiple Site Damage)结构裂纹萌生位置的不同可能对结构的安全性能存在影响,分析结构失效概率对各应力集中部位裂纹萌生寿命和应力的敏感性,量化其对结构安全性能的影响.裂纹萌生寿命采用对数正态模型...考虑到飞机结构的多部位损伤(MSD,Multiple Site Damage)结构裂纹萌生位置的不同可能对结构的安全性能存在影响,分析结构失效概率对各应力集中部位裂纹萌生寿命和应力的敏感性,量化其对结构安全性能的影响.裂纹萌生寿命采用对数正态模型,通过定义核函数建立MSD结构失效的敏感性分析模型,采用Monte-Carlo模拟计算概率敏感度.该方法利用Monte-Carlo概率分析的结果,只需增加少许计算量即可得到失效概率对参数的敏感度.将该方法应用于共线多孔板分析,得到了给定寿命下失效概率对各关键位置应力和裂纹萌生寿命对数均值的敏感度,从而确定了对结构安全影响最大的位置.展开更多
首先阐明组合法求解有限板多孔MSD(multiple site damage)应力强度因子的基本原理,然后就组合法运用中比较难以解决的多孔边裂纹间的修正系数问题,提出一种基于复变函数法的有效解决方法。将完善后的组合法应用于有限板多孔MSD应力强度...首先阐明组合法求解有限板多孔MSD(multiple site damage)应力强度因子的基本原理,然后就组合法运用中比较难以解决的多孔边裂纹间的修正系数问题,提出一种基于复变函数法的有效解决方法。将完善后的组合法应用于有限板多孔MSD应力强度因子的求解,计算某型飞机典型铆接壁板无主裂纹和含主裂纹两种情况的数值算例。通过与有限元结果的比较可知,该方法的计算结果精确、可靠,计算过程简单、易行。提出的近似解析方法能很好地应用于任意分布的有限板多孔MSD裂纹结构,在工程断裂问题中有较好的应用价值。展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the National Natural Science Foundation of China(Grant No.61073049)
文摘The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit (MSD) floating-point division using Newton-Raphson method on the system of ternary optical computer (TOC) is studied. Since the addition of MSD floating-point is carry-free and the digit width of the system of TOC is large, it is easy to deal with the enough wide data and transform the division operation into multiplication and addition operations. And using data scan and truncation the problem of digits expansion is effectively solved in the range of error limit. The division gets the good results and the efficiency is high. The instance of MSD floating-point division shows that the method is feasible.
文摘考虑到飞机结构的多部位损伤(MSD,Multiple Site Damage)结构裂纹萌生位置的不同可能对结构的安全性能存在影响,分析结构失效概率对各应力集中部位裂纹萌生寿命和应力的敏感性,量化其对结构安全性能的影响.裂纹萌生寿命采用对数正态模型,通过定义核函数建立MSD结构失效的敏感性分析模型,采用Monte-Carlo模拟计算概率敏感度.该方法利用Monte-Carlo概率分析的结果,只需增加少许计算量即可得到失效概率对参数的敏感度.将该方法应用于共线多孔板分析,得到了给定寿命下失效概率对各关键位置应力和裂纹萌生寿命对数均值的敏感度,从而确定了对结构安全影响最大的位置.
文摘首先阐明组合法求解有限板多孔MSD(multiple site damage)应力强度因子的基本原理,然后就组合法运用中比较难以解决的多孔边裂纹间的修正系数问题,提出一种基于复变函数法的有效解决方法。将完善后的组合法应用于有限板多孔MSD应力强度因子的求解,计算某型飞机典型铆接壁板无主裂纹和含主裂纹两种情况的数值算例。通过与有限元结果的比较可知,该方法的计算结果精确、可靠,计算过程简单、易行。提出的近似解析方法能很好地应用于任意分布的有限板多孔MSD裂纹结构,在工程断裂问题中有较好的应用价值。