Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan...Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.展开更多
Minimum quantity lubrication(MQL)is a technique that achieves effective lubrication and cooling of the cutting zone by using a minimal amount of cutting fluid.This results in a decrease in the cutting temperature,exte...Minimum quantity lubrication(MQL)is a technique that achieves effective lubrication and cooling of the cutting zone by using a minimal amount of cutting fluid.This results in a decrease in the cutting temperature,extending the cutting tool life and improving the surface quality of the workpiece.Optimizing the nozzle settings can enhance the cooling and lubrication performance of MQL,leading to increased processing efficiency and product quality.Nozzles with different shapes are fabricated,and different outlet diameters and wall thicknesses are set.The cutting process takes into account the impact of spindle speed and feed rate.An experimental study is conducted to investigate the atomization cone angle and particle size distribution of different nozzles.The circular nozzle is more conducive to the concentrated injection of an atomized liquid beam.The atomization cone angle is the largest when the nozzle outlet diameter is 1.2 mm.Enlarging the nozzle outlet diameter will increase the diameter of the atomized droplets.The atomization cone angle increases while the droplet diameter decreases with the increase of outlet wall thickness.Properly increasing the outlet wall thickness is beneficial to improving the atomization quality.The droplet diameter increases firstly and then decreases with the increase of spindle speed and feed rate.Increasing the MQL gas supply pressure and reducing the lubricating oil flow rate will improve the atomization quality of the nozzle.Studies on the influence of the MQL nozzle processing technology on the atomization effect can help to enhance the cooling and lubrication performance of the MQL technology,leading to improved processing efficiency and quality.展开更多
As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening o...As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry.展开更多
To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal q...To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415,and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-IV-002-001 and P2023-B-IV-003-001)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the National Key Laboratory of Science and Technology on Helicopter Transmission in NUAA(No.HTL-A-22G12).
文摘Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.
文摘Minimum quantity lubrication(MQL)is a technique that achieves effective lubrication and cooling of the cutting zone by using a minimal amount of cutting fluid.This results in a decrease in the cutting temperature,extending the cutting tool life and improving the surface quality of the workpiece.Optimizing the nozzle settings can enhance the cooling and lubrication performance of MQL,leading to increased processing efficiency and product quality.Nozzles with different shapes are fabricated,and different outlet diameters and wall thicknesses are set.The cutting process takes into account the impact of spindle speed and feed rate.An experimental study is conducted to investigate the atomization cone angle and particle size distribution of different nozzles.The circular nozzle is more conducive to the concentrated injection of an atomized liquid beam.The atomization cone angle is the largest when the nozzle outlet diameter is 1.2 mm.Enlarging the nozzle outlet diameter will increase the diameter of the atomized droplets.The atomization cone angle increases while the droplet diameter decreases with the increase of outlet wall thickness.Properly increasing the outlet wall thickness is beneficial to improving the atomization quality.The droplet diameter increases firstly and then decreases with the increase of spindle speed and feed rate.Increasing the MQL gas supply pressure and reducing the lubricating oil flow rate will improve the atomization quality of the nozzle.Studies on the influence of the MQL nozzle processing technology on the atomization effect can help to enhance the cooling and lubrication performance of the MQL technology,leading to improved processing efficiency and quality.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375447,52305477 and 52105457)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2023QE057,ZR2024QE100 and ZR2024ME255)+2 种基金Qingdao Municipal Science and Technology Planning Park Cultivation Plan(Grant No.23-1-5-yqpy-17-qy)Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project(Grant No.2022TSGC1115)the Special Fund of Taishan Scholars。
文摘As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry.
基金Supported by the National Natural Science Foundation of China(50975141,51005118)~~
文摘To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.