To explore the relationship between dynamic characteristics and wake patterns,numerical simulations were conducted on three equal-diameter cylinders arranged in an equilateral triangle.The simulations varied reduced v...To explore the relationship between dynamic characteristics and wake patterns,numerical simulations were conducted on three equal-diameter cylinders arranged in an equilateral triangle.The simulations varied reduced velocities and gap spacing to observe flow-induced vibrations(FIVs).The immersed boundary–lattice Boltzmann flux solver(IB–LBFS)was applied as a numerical solution method,allowing for straightforward application on a simple Cartesian mesh.The accuracy and rationality of this method have been verified through comparisons with previous numerical results,including studies on flow past three stationary circular cylinders arranged in a similar pattern and vortex-induced vibrations of a single cylinder across different reduced velocities.When examining the FIVs of three cylinders,numerical simulations were carried out across a range of reduced velocities(3.0≤Ur≤13.0)and gap spacing(L=3D,4D,and 5D).The observed vibration response included several regimes:the desynchronization regime,the initial branch,and the lower branch.Notably,the transverse amplitude peaked,and a double vortex street formed in the wake when the reduced velocity reached the lower branch.This arrangement of three cylinders proved advantageous for energy capture as the upstream cylinder’s vibration response mirrored that of an isolated cylinder,while the response of each downstream cylinder was significantly enhanced.Compared to a single cylinder,the vibration and flow characteristics of this system are markedly more complex.The maximum transverse amplitudes of the downstream cylinders are nearly identical and exceed those observed in a single-cylinder set-up.Depending on the gap spacing,the flow pattern varied:it was in-phase for L=3D,antiphase for L=4D,and exhibited vortex shedding for L=5D.The wake configuration mainly featured double vortex streets for L=3D and evolved into two pairs of double vortex streets for L=5D.Consequently,it well illustrates the coupling mechanism that dynamics characteristics and wake vortex change with gap spacing and reduced velocities.展开更多
The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm t...The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above.展开更多
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i...The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.展开更多
以Aspen Open Solver接口集中的非线性代数方程组(NLA)部分作为研究对象,在对接口集进行系统地分析之后,利用AspenTech提供的接口代码将分别基于梯度和非基于梯度的四种求解算法嵌入生成solver组件,并实现用Aspen Plus调用该solver组件...以Aspen Open Solver接口集中的非线性代数方程组(NLA)部分作为研究对象,在对接口集进行系统地分析之后,利用AspenTech提供的接口代码将分别基于梯度和非基于梯度的四种求解算法嵌入生成solver组件,并实现用Aspen Plus调用该solver组件观察各种算法嵌入的结果。展开更多
We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of plana...We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of planar flow fields where the transverse direction exhibits vanishing but non-zero velocity components,such as a disturbed onedimensional(1D)steady shock wave,we conduct a formal asymptotic analysis for the Euler system and associated numerical methods.This analysis aims to illustrate the discrepancies among various low-dissipative numerical algorithms.Furthermore,a numerical stability analysis of steady shock is undertaken to identify the key factors underlying shock-stable algorithms.To verify the stability mechanism,a consistent,low-dissipation,and shock-stable HLLC-type Riemann solver is presented.展开更多
基金Supported by the National Natural Science Foundation of China(52201350,52201394,and 52271301)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2022008).
文摘To explore the relationship between dynamic characteristics and wake patterns,numerical simulations were conducted on three equal-diameter cylinders arranged in an equilateral triangle.The simulations varied reduced velocities and gap spacing to observe flow-induced vibrations(FIVs).The immersed boundary–lattice Boltzmann flux solver(IB–LBFS)was applied as a numerical solution method,allowing for straightforward application on a simple Cartesian mesh.The accuracy and rationality of this method have been verified through comparisons with previous numerical results,including studies on flow past three stationary circular cylinders arranged in a similar pattern and vortex-induced vibrations of a single cylinder across different reduced velocities.When examining the FIVs of three cylinders,numerical simulations were carried out across a range of reduced velocities(3.0≤Ur≤13.0)and gap spacing(L=3D,4D,and 5D).The observed vibration response included several regimes:the desynchronization regime,the initial branch,and the lower branch.Notably,the transverse amplitude peaked,and a double vortex street formed in the wake when the reduced velocity reached the lower branch.This arrangement of three cylinders proved advantageous for energy capture as the upstream cylinder’s vibration response mirrored that of an isolated cylinder,while the response of each downstream cylinder was significantly enhanced.Compared to a single cylinder,the vibration and flow characteristics of this system are markedly more complex.The maximum transverse amplitudes of the downstream cylinders are nearly identical and exceed those observed in a single-cylinder set-up.Depending on the gap spacing,the flow pattern varied:it was in-phase for L=3D,antiphase for L=4D,and exhibited vortex shedding for L=5D.The wake configuration mainly featured double vortex streets for L=3D and evolved into two pairs of double vortex streets for L=5D.Consequently,it well illustrates the coupling mechanism that dynamics characteristics and wake vortex change with gap spacing and reduced velocities.
基金partial financial support from Gazpromneft Science and Technology Center。
文摘The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above.
基金the National Supercomputer Center in Tianjin for their patient assistance in providing the compilation environment.We thank the editor,Huajian Yao,for handling the manuscript and Mingming Li and another anonymous reviewer for their constructive comments.The research leading to these results has received funding from National Natural Science Foundation of China projects(Grant Nos.92355302 and 42121005)Taishan Scholar projects(Grant No.tspd20210305)others(Grant Nos.XDB0710000,L2324203,XK2023DXC001,LSKJ202204400,and ZR2021ZD09).
文摘The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.
基金Project supported by the National Natural Science Foundation of China(Nos.12471367 and12361076)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Nos.NJZY19186,NJZY22036,and NJZY23003)。
文摘We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of planar flow fields where the transverse direction exhibits vanishing but non-zero velocity components,such as a disturbed onedimensional(1D)steady shock wave,we conduct a formal asymptotic analysis for the Euler system and associated numerical methods.This analysis aims to illustrate the discrepancies among various low-dissipative numerical algorithms.Furthermore,a numerical stability analysis of steady shock is undertaken to identify the key factors underlying shock-stable algorithms.To verify the stability mechanism,a consistent,low-dissipation,and shock-stable HLLC-type Riemann solver is presented.
文摘为了满足航空器经济性的制造需求,降低航空器内部的有效载荷,使用无线代替有线已经成为机载网络转型升级的重要方向,然而传统无线技术难以满足机载网络中时间敏感业务的实时性传输需求.因此,通过明确机载无线通信网络(airborne wireless communication network, AWCN)的应用特点,设计了AWCN结合机载骨干交换网络的混合拓扑架构;综合考虑了节点无冲突、信道无干扰、路径依赖与端到端时延需求,构建了时间触发的AWCN确定性调度应该满足的一阶逻辑形式;理论分析了不同信道数量下完成调度所需要的最少时隙数量与制约端到端时延的主要因素,并证明了稳态时数据流在网关处的信息年龄期望值;设计了基于整数规划的调度方法,并针对大规模网络中决策变量多、约束之间耦合性高而导致的求解效率低的缺陷,提出了一种增量式求解策略.最后,通过实验验证了确定性调度模型与理论分析的有效性,并讨论了不同调度影响因子对数据流总时延与调度规模的影响.