Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fuse...Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fusel alcohol contents in beer is a common problem in the industry.How to control the contents of fusel alcohols in a reasonable range is of great significance for improving beer quality.After one round of ultraviolet(UV)and one round of multifunctional plasma mutagenesis system(MPMS)mutagenesis,the yeast strains with lower fusel oil yield and more stablility could be screened.According to the relationship between the fusel alcohol Harris metabolic pathway of brewer's yeast and lactic acid metabolism,excellent strains were obtained by triple screening with lactic acid medium,calcium carbonate medium and 2,3,5-triphenyl tetrazolium chloride upper medium.The content of fusel alcohol in the finished beer fermentation test of screened strain Z43 was 52.1±0.142 mg•L^(-1),which was 43%lower than that of the starting strain,and other fermentation properties remained unchanged.After eight passages,it was verified that the strain was stable and heritable.These results showed that strain Z43 presented promising characteristics for use in the production of beer with a potentially low contents of fusel alcohols.展开更多
Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deforma...Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.展开更多
Ground anchor drilling is a promising technology for investigating the mechanical properties and environmental variability of lunar regolith in low-gravity environments,with minimal demands for reactive cutting.This s...Ground anchor drilling is a promising technology for investigating the mechanical properties and environmental variability of lunar regolith in low-gravity environments,with minimal demands for reactive cutting.This study explores the interaction behavior during ground anchor drilling of lunar regolith by employing a coupled approach that integrates the Material Point Method(MPM)and the ContinuouseDiscontinuous Element Method(CDEM),considering the interactions among numerous particles and blocks.The numerical parameters are calibrated based on experimental penetration resistance data of lunar regolith simulant.The numerical approach effectively captures key mechanical properties of the simulant,such as particle flow and scattering patterns,anchor penetration effects,and disturbance-related ultimate bearing characteristics.Additionally,this study examines the influence of inter-particle friction and compactness on penetration resistance.By combining the Golden Section Search Method(GSSM)with ground anchor drilling simulations,an inverse analysis model for penetration resistance is developed,allowing for the determination of mechanical parameters of the lunar regolith simulant.The feasibility of this parameter inversion method is verified,providing valuable insights for engineering applications in lunar exploration and construction.展开更多
In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this sche...In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated.展开更多
基于MATLAB矢量化的物质点法(material point method,MPM)框架,分析车身前防撞梁的碰撞冲击问题。MPM在每一迭代步将物理参数在物质点和背景网格间相互映射,使用MATLAB矢量化框架可以使用户在快速入门的同时保证求解效率,其应力更新采...基于MATLAB矢量化的物质点法(material point method,MPM)框架,分析车身前防撞梁的碰撞冲击问题。MPM在每一迭代步将物理参数在物质点和背景网格间相互映射,使用MATLAB矢量化框架可以使用户在快速入门的同时保证求解效率,其应力更新采用车身结构材料的弹塑性本构模型。前防撞梁碰撞冲击数值算例结果表明,MPM可以保证求解精度,同时矢量化技术可以大幅提高求解效率。展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
微波功率模块(Microwave Power Module,MPM)是电真空发射机的发展方向之一,目前MPM饱和功率量级在百瓦量级。为保障系统工作稳定性和判断MPM的输出能效,需要MPM具有实时监测输出功率的能力。文章提出了一种在行波管输出端增加耦合口的...微波功率模块(Microwave Power Module,MPM)是电真空发射机的发展方向之一,目前MPM饱和功率量级在百瓦量级。为保障系统工作稳定性和判断MPM的输出能效,需要MPM具有实时监测输出功率的能力。文章提出了一种在行波管输出端增加耦合口的方案来监测输出功率。相比传统通过定向耦合器测试功率的方案,该方案具有高效率、小型化、低成本、高可靠性等特点。展开更多
基金Supported by Heilongjiang Natural Science Foundation Joint Guide Project(LH2019C022)。
文摘Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fusel alcohol contents in beer is a common problem in the industry.How to control the contents of fusel alcohols in a reasonable range is of great significance for improving beer quality.After one round of ultraviolet(UV)and one round of multifunctional plasma mutagenesis system(MPMS)mutagenesis,the yeast strains with lower fusel oil yield and more stablility could be screened.According to the relationship between the fusel alcohol Harris metabolic pathway of brewer's yeast and lactic acid metabolism,excellent strains were obtained by triple screening with lactic acid medium,calcium carbonate medium and 2,3,5-triphenyl tetrazolium chloride upper medium.The content of fusel alcohol in the finished beer fermentation test of screened strain Z43 was 52.1±0.142 mg•L^(-1),which was 43%lower than that of the starting strain,and other fermentation properties remained unchanged.After eight passages,it was verified that the strain was stable and heritable.These results showed that strain Z43 presented promising characteristics for use in the production of beer with a potentially low contents of fusel alcohols.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the National Natural Science Foundation of China(Grant Nos.42461160266 and 52379106).
文摘Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52178324,12102059,and 12472207).
文摘Ground anchor drilling is a promising technology for investigating the mechanical properties and environmental variability of lunar regolith in low-gravity environments,with minimal demands for reactive cutting.This study explores the interaction behavior during ground anchor drilling of lunar regolith by employing a coupled approach that integrates the Material Point Method(MPM)and the ContinuouseDiscontinuous Element Method(CDEM),considering the interactions among numerous particles and blocks.The numerical parameters are calibrated based on experimental penetration resistance data of lunar regolith simulant.The numerical approach effectively captures key mechanical properties of the simulant,such as particle flow and scattering patterns,anchor penetration effects,and disturbance-related ultimate bearing characteristics.Additionally,this study examines the influence of inter-particle friction and compactness on penetration resistance.By combining the Golden Section Search Method(GSSM)with ground anchor drilling simulations,an inverse analysis model for penetration resistance is developed,allowing for the determination of mechanical parameters of the lunar regolith simulant.The feasibility of this parameter inversion method is verified,providing valuable insights for engineering applications in lunar exploration and construction.
基金supported by National Natural Science Foundation of China(Grant No.42377149)the Research Grants Council of Hong Kong(General Research Fund Project No.17202423).
文摘In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated.
文摘基于MATLAB矢量化的物质点法(material point method,MPM)框架,分析车身前防撞梁的碰撞冲击问题。MPM在每一迭代步将物理参数在物质点和背景网格间相互映射,使用MATLAB矢量化框架可以使用户在快速入门的同时保证求解效率,其应力更新采用车身结构材料的弹塑性本构模型。前防撞梁碰撞冲击数值算例结果表明,MPM可以保证求解精度,同时矢量化技术可以大幅提高求解效率。
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
文摘微波功率模块(Microwave Power Module,MPM)是电真空发射机的发展方向之一,目前MPM饱和功率量级在百瓦量级。为保障系统工作稳定性和判断MPM的输出能效,需要MPM具有实时监测输出功率的能力。文章提出了一种在行波管输出端增加耦合口的方案来监测输出功率。相比传统通过定向耦合器测试功率的方案,该方案具有高效率、小型化、低成本、高可靠性等特点。