期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
RcMPK3正向调控月季对灰霉病菌的响应 被引量:1
1
作者 高鹏华 张颢 +5 位作者 王其刚 晏慧君 蹇洪英 鄢波 唐开学 邱显钦 《植物科学学报》 CAS CSCD 北大核心 2022年第1期66-73,共8页
灰霉病是月季采后和运输过程中危害最严重的真菌病害。MPK3基因参与植物对逆境的响应。基于古老月季品种‘月月粉’(Rosa chinensis‘Old Blush’Jacq.)全基因组数据,利用RT-PCR技术获得了包含完整ORF区的RcMPK3基因,并对其进行生物信... 灰霉病是月季采后和运输过程中危害最严重的真菌病害。MPK3基因参与植物对逆境的响应。基于古老月季品种‘月月粉’(Rosa chinensis‘Old Blush’Jacq.)全基因组数据,利用RT-PCR技术获得了包含完整ORF区的RcMPK3基因,并对其进行生物信息学分析和功能检测。结果显示:RcMPK3基因ORF序列长1113 bp,编码370个氨基酸,系统进化树分析结果表明RcMPK3蛋白与FvMPK3蛋白聚为一支;对基因全长序列分析发现,RcMPK3由6个外显子和5个内含子构成,启动子序列包含10类响应激素和逆境相关的顺式元件;qPCR分析表明,RcMPK3受SA和JA诱导表达,同时,在灰霉病菌(Botrytis cinerea)侵染过程中,RcMPK3基因表达量也显著提高;VIGS分析发现,基因沉默株系病斑直径显著大于对照组株系,表明RcMPK3基因可能正向调控月季对灰霉病菌的抗性。 展开更多
关键词 月季 灰霉病 mpk3基因 启动子 植物激素 qPCR VIGS
在线阅读 下载PDF
Salt Stress in Arabidopsis: Lipid Transfer Protein AZI1 and Its Control by Mitogen-Activated Protein Kinase MPK3 被引量:15
2
作者 Andrea Pitzschke Sneha Datta Helene Persak 《Molecular Plant》 SCIE CAS CSCD 2014年第4期722-738,共17页
A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly asso... A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly associated with numerous abiotic and biotic stress responses. Identification of MPK3 substrates is a milestone towards improving stress resistance in plants. Here, we characterize AZI1, a lipid transfer protein (LTP)-related hybrid proline-rich protein (HyPRP), as a novel target of MPK3. AZI1 is phosphorylated by MPK3 in vitro. As documented by co-immunoprecipitation and bimolecular fluorescence complementation experiments, AZI1 interacts with MPK3 to form protein complexes in planta. Furthermore, null mutants of azil are hypersensitive to salt stress, while AZIl-overexpressing lines are markedly more tolerant. AZI1 overexpression in the mpk3 genetic background partially alleviates the salt-hypersensitive phenotype of this mutant, but functional MPK3 appears to be required for the full extent of AZIl-conferred robustness. Notably, this robustness does not come at the expense of normal development. Immunoblot and RT-PCR data point to a role of MPK3 as positive regulator of AZI1 abundance. 展开更多
关键词 salt stress ARABIDOPSIS MAPK mpk3 lipid transfer protein AZI1 PHOSPHORYLATION in vivo interaction.
原文传递
The YDA-MKK4/MKK5-MPK3/MPK6 Cascade Functions Downstream of the RGF1-RGI Ligand-Receptor Pair in Regulating Mitotic Activity in Root Apical Meristem 被引量:15
3
作者 Yiming Shao Xinxing Yu +6 位作者 Xuwen Xu Yong Li Wenxin Yuan Yan Xu Chuanzao Mao Shuqun Zhang Juan Xu 《Molecular Plant》 SCIE CAS CSCD 2020年第11期1608-1623,共16页
The mitotic activity of root apical meristem(RAM)is critical to primary root growth and development.Previous studies have identified the roles of ROOT GROWTH FACTOR 1(RGF1),a peptide ligand,and its receptors,RGF1 INSE... The mitotic activity of root apical meristem(RAM)is critical to primary root growth and development.Previous studies have identified the roles of ROOT GROWTH FACTOR 1(RGF1),a peptide ligand,and its receptors,RGF1 INSENSITIVEs(RGIs),a clade of five leucine-rich-repeat receptor-like kinases,in promoting cell division in the RAM,which determines the primary root length.However,the downstream signaling components remain elusive.In this study,we identify a complete mitogen-activated protein kinase(MAPK or MPK)cascade,composed of YDA,MKK4/MKK5,and MPK3/MPK6,that functions downstream of the RGF1-RGI ligand-receptor pair.Similar to the rgi1/2/3/4/5 quintuple mutant,loss-of-function mutants of MPK3 and MPK6,MKK4 and MKK5,or YDA show a short-root phenotype,which is associated with reduced mitotic activity and lower expression of PLETHORA 1(PLT1)/PLT2 in the RAM.Furthermore,MPK3/MPK6 activation in response to exogenous RGF1 treatment is impaired in the rgi1/2/3/4/5 quintuple,yda single,and mkk4 m kk5 double mutants.Epistatic analyses demonstrated that the expression of constitutively active MKK4,MKK5,or YDA driven by the RGI2 promoter can rescue the short-root phenotype of the rgi1/2/3/4/5 mutant.Taken together,these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair and upstream of PLT1/PLT2 to modulate the stem cell population and primary root growth in Arabidopsis. 展开更多
关键词 root meristem mpk3/MPK6 RGF1-RGIs PLT1/PLT2 signaling pathway Arabidopsis
原文传递
A Dominant Allele of Arabidopsis Pectin-Binding Wall-Associated Kinase Induces a Stress Response Suppressed by MPK6 but Not MPK3 Mutations 被引量:7
4
作者 Bruce D. Kohorn Susan L. Kohorn Tanya Todorova Gillian Baptiste Kevin Stansky Meghan McCullough 《Molecular Plant》 SCIE CAS CSCD 2012年第4期841-851,共11页
The plant cell wall is composed of a matrix of cellulose fibers, flexible pectin polymers, and an array of as- sorted carbohydrates and proteins. The receptor-like Wall-Associated Kinases (WAKs) of Arabidopsis bind ... The plant cell wall is composed of a matrix of cellulose fibers, flexible pectin polymers, and an array of as- sorted carbohydrates and proteins. The receptor-like Wall-Associated Kinases (WAKs) of Arabidopsis bind pectin in the wall, and are necessary both for cell expansion during development and for a response to pathogens and wounding. Mitogen Activated Protein Kinases (MPKs) form a major signaling link between cell surface receptors and both transcrip- tional and enzyme regulation in eukaryotes, and Arabidopsis MPK6 and MPK3 indeed have important roles in develop- ment and the response to stress and pathogens. A dominant allele of WAK2 requires kinase activity and activates a stress response that includes an increased ROS accumulation and the up-regulation of numerous genes involved in pathogen resistance, wounding, and cell wall biogenesis. This dominant allele requires a functional pectin binding and kinase domain, indicating that it is engaged in a WAK signaling pathway. A null mutant of the major plasma membrane ROS-producing enzyme complex, rbohd/f does not suppress the WAK2cTAP-induced phenotype. A mpk6, but not a mpk3, null allele is able to suppress the effects of this dominant WAK2 mutation, thus distinguishing MPK3 and MPK6, whose activity previously was thought to be redundant. Pectin activation of gene expression is abated in a wak2-null, but is tempered by the WAK-dominant allele that induces elevated basal stress-related transcript levels. The results suggest a mechanism in which changes to the cell wall can lead to a large change in cellular responses and help to explain how pathogens and wounding can have general effects on growth. 展开更多
关键词 Wall Associated Kinases mpk3 MPK6 PECTIN oligogalacturonides.
原文传递
Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development 被引量:5
5
作者 Yidong Liu Emma Leary +2 位作者 Obai Saffaf RFrank Baker Shuqun Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第8期1531-1542,共12页
Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3(MAPK3 or MPK3)and MPK6 play important signaling roles in plant immunity and growth/development.MAPK KINASE4(MKK4)and MKK5 function redundantly upstream of MPK3 and MPK6 in... Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3(MAPK3 or MPK3)and MPK6 play important signaling roles in plant immunity and growth/development.MAPK KINASE4(MKK4)and MKK5 function redundantly upstream of MPK3 and MPK6 in these processes.YODA(YDA),also known as MAPK KINASE KINASE4(MAPKKK4),is upstream of MKK4/MKK5 and forms a complete MAPK cascade(YDA–MKK4/MKK5–MPK3/MPK6)in regulating plant growth and development.In plant immunity,MAPKKK3 and MAPKKK5 function redundantly upstream of the same MKK4/MKK5–MPK3/MPK6 module.However,the residual activation of MPK3/MPK6 in the mapkkk3 mapkkk5 double mutant in response to flg22 pathogen-associated molecular pattern(PAMP)treatment suggests the presence of additional MAPKKK(s)in this MAPK cascade in signaling plant immunity.To investigate whether YDA is also involved in plant immunity,we attempted to generate mapkkk3 mapkkk5 yda triple mutants.However,it was not possible to recover one of the double mutant combinations(mapkkk5 yda)or the triple mutant(mapkkk3 mapkkk5 yda)due to a failure of embryogenesis.Using the clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPRassociated protein 9(Cas9)approach,we generated weak,N-terminal deletion alleles of YDA,yda-del,in a mapkkk3 mapkkk5 background.PAMP-triggered MPK3/MPK6 activation was further reduced in the mapkkk3 mapkkk5 yda-del mutant,and the triple mutant was more susceptible to pathogen infection,suggesting YDA also plays an important role in plant immune signaling.In addition,MAPKKK5 and,to a lesser extent,MAPKKK3 were found to contribute to gamete function and embryogenesis,together with YDA.While the double homozygous mapkkk3 yda mutant showed the same growth and development defects as the yda single mutant,mapkkk5 yda double mutant and mapkkk3 mapkkk5 yda triple mutants were embryo lethal,similar to the mpk3 mpk6 double mutants.These results demonstrate that YDA,MAPKKK3,and MAPKKK5 have overlapping functions upstream of the MKK4/MKK5–MPK3/MPK6 module in both plant immunity and growth/development. 展开更多
关键词 EMBRYOGENESIS gamete transmission MAPK cascade mpk3/MPK6 MAPKKK3/MAPKKK5 plant immunity YDA
原文传递
MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis 被引量:4
6
作者 Zuodong Wang Xiaoxu Li +14 位作者 Xiaohui Yao Jinbiao Ma Kai Lu Yuyan An Zhimao Sun Qian Wang Miao Zhou Lina Qin Liyuan Zhang Shenshen Zou Lei Chen Congfeng Song Hansong Dong Meixiang Zhang Xiaochen Chen 《Plant Communications》 SCIE CSCD 2023年第6期259-276,共18页
The plant signaling pathway that regulates pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)involves mitogen-activated protein kinase(MAPK)cascades that comprise sequential activation of several prot... The plant signaling pathway that regulates pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)involves mitogen-activated protein kinase(MAPK)cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs,which activate transcription factors(TFs)to promote downstream defense responses.To identify plant TFs that regulate MAPKs,we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway.MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6.Under PAMP treatment,MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression,leading to phosphorylation of MPK3 and MPK6 proteins.In turn,phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner,thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses.Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44,which has previously been shown to affect PAMP recognition and PTI development.AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade. 展开更多
关键词 ARABIDOPSIS MPK cascade mpk3/6 EIN2 MYB44 PTI
原文传递
LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi
7
作者 Fei Wang Zhijian Liang +3 位作者 Xingshuai Ma Zidi He Jianguo Li Minglei Zhao 《Molecular Horticulture》 2024年第1期235-252,共18页
Mitogen-activated protein kinase(MAPK)cascades have been discovered to play a fundamental role in regulating organ abscission.However,the identity of protein substrates targeted by MAPK cascades,as well as whether the... Mitogen-activated protein kinase(MAPK)cascades have been discovered to play a fundamental role in regulating organ abscission.However,the identity of protein substrates targeted by MAPK cascades,as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species,remain unknown.Here,the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi.Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission,while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission.Importantly,a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening,including two components of the MAPK signaling cascade,five transcription factors,and two aquaporins.Furthermore,the interaction between LcMPK3/6 with LcBZR1/2,core components in brassinosteroids signaling that suppress litchi fruitlet abscission,was confirmed using in vitro and in vivo assays.Moreover,phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2,with several phosphorylation residues identified.Together,our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi,and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants. 展开更多
关键词 LITCHI Fruit abscission mpk3/6
在线阅读 下载PDF
GmWRKY33A正向调控大豆抗病性 被引量:2
8
作者 钟晨丽 兰胡娇 +3 位作者 王文絮 赵雅婷 马小涵 刘建中 《生物工程学报》 CAS CSCD 北大核心 2024年第10期3810-3822,共13页
WRKY转录因子基因家族是植物特有的转录因子,在植物防御中起着重要作用。拟南芥中的研究表明WRKY作用于丝裂原活化蛋白激酶(mitogen activated-protein kinase,MAPK)级联途径下游,通过激活防御相关基因的表达而参与防御反应。然而大豆W... WRKY转录因子基因家族是植物特有的转录因子,在植物防御中起着重要作用。拟南芥中的研究表明WRKY作用于丝裂原活化蛋白激酶(mitogen activated-protein kinase,MAPK)级联途径下游,通过激活防御相关基因的表达而参与防御反应。然而大豆WRKY基因家族在防御中的作用尚不明晰。本研究通过生物信息学分析,在大豆中找到3对GmWRKY33同源基因。前2对GmWRKY33同源基因间的同源性高于84%(命名为GmWRKY33A),而每对GmWRKY33A同源基因间的同源性高于95%。从这4个GmWRKY33A同源基因保守区域选取300 bp片段构建至菜豆豆荚斑驳病毒-(bean pod mosaic virus,BPMV)改造的沉默载体(BPMV-VIGS)上以达到同时沉默上述4个GmWRKY33A基因的目的。结果表明,同时沉默上述4个GmWRKY33A基因并未改变沉默植株的发育表型,但沉默植株对大豆斑点病菌、大豆斑疹病菌和大豆花叶病毒的抗性却显著降低,说明GmWRKY33A不参与大豆的生长发育,但却参与大豆免疫反应。GmWRKY33A沉默植株中大豆斑点病菌侵染所诱导的GmMPK3和GmMPK6的激活程度显著低于空载体植株,表明GmWRKY33A可以通过调控GmMPK3/6的转录激活或激酶活性而参与大豆的免疫反应,GmWRKY33A是大豆免疫反应的正调控因子。 展开更多
关键词 GmWRKY33 大豆 病毒诱导基因沉默 免疫反应 Gm mpk3/6
原文传递
Phase separation of the nuclear pore complex facilitates selective nuclear transport to regulate plant defense against pathogen and pest invasion 被引量:5
9
作者 Jiaojiao Wang Gaofeng Pei +8 位作者 Yupei Wang Dewei Wu Xiaokang Liu Gaoming Li Jianfang He Xiaolin Zhang Xiaoyi Shan Pilong Li Daoxin Xie 《Molecular Plant》 SCIE CSCD 2023年第6期1016-1030,共15页
The nuclear pore complex(NPC),the sole exchange channel between the nucleus and cytoplasm,is composed of several subcomplexes,among which the central barrier determines the permeability/selectivity of the NPC to domin... The nuclear pore complex(NPC),the sole exchange channel between the nucleus and cytoplasm,is composed of several subcomplexes,among which the central barrier determines the permeability/selectivity of the NPC to dominate the nucleocytoplasmic trafficking essential for many important signaling events in yeast and mammals.How plant NPC central barrier controls selective transport is a crucial question remaining to be elucidated.In this study,we uncovered that phase separation of the central barrier is critical for the permeability and selectivity of plant NPC in the regulation of various biotic stresses.Phenotypic assays of nup62 mutants and complementary lines showed that NUP62 positively regulates plant defense against Botrytis cinerea,one of the world’s most disastrous plant pathogens.Furthermore,in vivo imaging and in vitro biochemical evidence revealed that plant NPC central barrier undergoes phase separation to regulate selective nucleocytoplasmic transport of immune regulators,as exemplified by MPK3,essential for plant resistance to B.cinerea.Moreover,genetic analysis demonstrated that NPC phase separation plays an important role in plant defense against fungal and bacterial infection as well as insect attack.These findings reveal that phase separation of the NPC central barrier serves as an important mechanism to mediate nucleocytoplasmic transport of immune regulators and activate plant defense against a broad range of biotic stresses. 展开更多
关键词 nuclear pore complex phase separation plant defense mpk3
原文传递
A Kinase-Phosphatase-Transcription Factor Module Regulates Adventitious Root Emergence in Arabidopsis Root-Hypocotyl Junctions 被引量:1
10
作者 Zechen Bai Jing Zhang +8 位作者 Xin Ning Hailong Guo Xiumei Xu Xiahe Huang Yingchun Wang Zhubing Hu Congming Lu Lixin Zhang Wei Chi 《Molecular Plant》 SCIE CAS CSCD 2020年第8期1162-1177,共16页
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding.The root primordia form in the source tissue,and during emergence the adventitious roots penetrate the i... Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding.The root primordia form in the source tissue,and during emergence the adventitious roots penetrate the inner cell layers and the epidermis;however,the mechanisms underlying this emergence remain largely unexplored.Here,we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4(ABI4),the MAP kinases MPK3 and MPK6,and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots(J-ARs)from the root-hypocotyl junctions in Arabidopsis thaliana.ABI4 negatively regulates J-AR emergence,preventing the accumulation of reactive oxygen species and death of epidermal cells,which would otherwise facilitate J-AR emergence.Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4.MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence.We propose that this"double-check"mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence. 展开更多
关键词 ABI4 mpk3/MPK6 PP2C12 adventitious root root-hypocotyl junction PCD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部