现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD(YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU(Maximized Position-Dependent Intersection over U...现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD(YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU(Maximized Position-Dependent Intersection over Union)方法改进边框损失函数,以适应重叠或非重叠的边界框回归(BBR),从而提高BBR的准确性和效率;其次,利用可逆柱状结构RevCol(Reversible Column)网络模型思想重构YOLOv5s模型的主干网络,使它具有多柱状网络架构,并在模型的不同层之间加入可逆链接,从而最大限度地保持特征信息以提高网络的特征提取能力;最后,引入Dynamic head检测头,以统一尺度感知、空间感知和任务感知,从而在不额外增加计算开销的条件下显著提高目标检测头的准确性和有效性。实验结果表明:在DFS(Data of Fire and Smoke)数据集上,与原始YOLOv5s算法相比,所提算法的平均精度均值(mAP@0.5)提升了9.3%,预测准确率提升了6.6%,召回率提升了13.8%。可见,所提算法能满足当前烟火检测应用场景的要求。展开更多
超纤革是一种用于高端产品的新型复合材料,其瑕疵检测对产品质量至关重要。针对超纤革表面瑕疵多尺度、长宽比差异大和微小瑕疵较多的难点,提出用于超纤革表面瑕疵识别的MFL_YOLOv8算法。MFL_YOLOv8算法首先基于Deformable Large Kernel...超纤革是一种用于高端产品的新型复合材料,其瑕疵检测对产品质量至关重要。针对超纤革表面瑕疵多尺度、长宽比差异大和微小瑕疵较多的难点,提出用于超纤革表面瑕疵识别的MFL_YOLOv8算法。MFL_YOLOv8算法首先基于Deformable Large Kernel Attention(DLKA)机制设计了多尺度特征提取模块DCNv3-LKA,显著增强了主干网络的多尺度特征提取能力;然后通过在特征金字塔网络中引入P2特征图和Dysample上采样模块,强化了网络对小目标的细节信息提取;最后引入Minimum Points Distance Intersection over Union(MPDIoU)以缓解训练初期小目标上的损失函数失效问题,提升了小目标的检测效果。在自制超纤革表面瑕疵数据集上的实验结果表明,相比于YOLOv8n,所提算法的平均检测精度和召回率分别提高了5.38%和7.27%,达到92.47%和92.40%,每秒帧率(FPS)为135.2 frame/s,满足工业现场的准确性和实时性要求。展开更多
主流道路车辆目标检测算法在复杂环境下对小目标识别精度低,易因遮挡和定位不准确造成漏检、误检。提出了改进版YOLOv5算法。针对道路上的小目标,改进Head检测层结构,添加大尺度目标检测层,提高道路上小目标检测精度。为适应目标的形状...主流道路车辆目标检测算法在复杂环境下对小目标识别精度低,易因遮挡和定位不准确造成漏检、误检。提出了改进版YOLOv5算法。针对道路上的小目标,改进Head检测层结构,添加大尺度目标检测层,提高道路上小目标检测精度。为适应目标的形状和尺度变化多样,在颈部网络引入全维动态卷积(Omni-Dimensional Dynamic Convolution,ODConv),对原卷积模块进行替换,提高特征提取能力。为了充分利用全局信息,在颈部网络引入全局注意力机制(Global Attention Mechanism,GAM),提升特征提取能力。针对定位精度问题,引入MPDIoU损失函数,使预测框与真实框更加符合。实验结果表明,改进的YOLOv5算法在自动驾驶数据集KITTI上平均精度均值(mean Average Precision,mAP)达到88.7%,相较于基准模型提高了2%,每秒帧数(Frames per Second,FPS)提升了12%。改进算法的检测精度更高,检测速度更快,有效改善了复杂道路条件下的目标检测问题。展开更多
针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同...针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。展开更多
文摘现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD(YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU(Maximized Position-Dependent Intersection over Union)方法改进边框损失函数,以适应重叠或非重叠的边界框回归(BBR),从而提高BBR的准确性和效率;其次,利用可逆柱状结构RevCol(Reversible Column)网络模型思想重构YOLOv5s模型的主干网络,使它具有多柱状网络架构,并在模型的不同层之间加入可逆链接,从而最大限度地保持特征信息以提高网络的特征提取能力;最后,引入Dynamic head检测头,以统一尺度感知、空间感知和任务感知,从而在不额外增加计算开销的条件下显著提高目标检测头的准确性和有效性。实验结果表明:在DFS(Data of Fire and Smoke)数据集上,与原始YOLOv5s算法相比,所提算法的平均精度均值(mAP@0.5)提升了9.3%,预测准确率提升了6.6%,召回率提升了13.8%。可见,所提算法能满足当前烟火检测应用场景的要求。
文摘超纤革是一种用于高端产品的新型复合材料,其瑕疵检测对产品质量至关重要。针对超纤革表面瑕疵多尺度、长宽比差异大和微小瑕疵较多的难点,提出用于超纤革表面瑕疵识别的MFL_YOLOv8算法。MFL_YOLOv8算法首先基于Deformable Large Kernel Attention(DLKA)机制设计了多尺度特征提取模块DCNv3-LKA,显著增强了主干网络的多尺度特征提取能力;然后通过在特征金字塔网络中引入P2特征图和Dysample上采样模块,强化了网络对小目标的细节信息提取;最后引入Minimum Points Distance Intersection over Union(MPDIoU)以缓解训练初期小目标上的损失函数失效问题,提升了小目标的检测效果。在自制超纤革表面瑕疵数据集上的实验结果表明,相比于YOLOv8n,所提算法的平均检测精度和召回率分别提高了5.38%和7.27%,达到92.47%和92.40%,每秒帧率(FPS)为135.2 frame/s,满足工业现场的准确性和实时性要求。
文摘主流道路车辆目标检测算法在复杂环境下对小目标识别精度低,易因遮挡和定位不准确造成漏检、误检。提出了改进版YOLOv5算法。针对道路上的小目标,改进Head检测层结构,添加大尺度目标检测层,提高道路上小目标检测精度。为适应目标的形状和尺度变化多样,在颈部网络引入全维动态卷积(Omni-Dimensional Dynamic Convolution,ODConv),对原卷积模块进行替换,提高特征提取能力。为了充分利用全局信息,在颈部网络引入全局注意力机制(Global Attention Mechanism,GAM),提升特征提取能力。针对定位精度问题,引入MPDIoU损失函数,使预测框与真实框更加符合。实验结果表明,改进的YOLOv5算法在自动驾驶数据集KITTI上平均精度均值(mean Average Precision,mAP)达到88.7%,相较于基准模型提高了2%,每秒帧数(Frames per Second,FPS)提升了12%。改进算法的检测精度更高,检测速度更快,有效改善了复杂道路条件下的目标检测问题。
文摘针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。