期刊文献+
共找到4,111篇文章
< 1 2 206 >
每页显示 20 50 100
High damping,rubber bearing isolators supplemented with Cu-Al-Be-and Ni-Ti-based shape memory alloy bars subjected to near-fault motions with fling step and forward directivity
1
作者 Nasrin Saeedi Hassan Karampour Nima Talebian 《Earthquake Engineering and Engineering Vibration》 2025年第4期1107-1123,共17页
Shape memory alloy(SMA)bars are currently preferred over elastomeric seismic isolators due to the elimination of degradation within effective damping and stiffness factors during the cyclic response of an isolation sy... Shape memory alloy(SMA)bars are currently preferred over elastomeric seismic isolators due to the elimination of degradation within effective damping and stiffness factors during the cyclic response of an isolation system.These bars could also be used to prevent the functionality of the isolator units from failing due to large deformations.This study aims to investigate the performance of a high damping rubber bearing(HDRB)isolator that is combined with two different types of SMA bars,i.e.,Nickel-Titanium(Ni-Ti)and Copper-Aluminum-Beryllium(Cu-Al-Be),subjected to near-fault ground motions that are characterized with forward directivity and fling step effects.To achieve this objective,a self-centering material with flag-shape,force-deformation hysteresis was utilized to simulate the behavior of SMA bars in OpenSees.A single degree of freedom(SDOF)system representing an isolated one-story shear building was developed to conduct nonlinear analysis under selected ground motions.The SMA bars were introduced as an X-shape within the model and were connected diagonally to the top and bottom of the isolator.Results showed that the HDRB system’s hysteretic response under near-fault ground accelerations experiences significant degradation,especially when near-fault motions involve the fling step effect.It was demonstrated that SMA bars effectively reduce large displacement observed in HDRB systems under near-fault earthquakes.Comparing the results of the base-isolated HDRB and SMA-HDRB subjected to selected ground motions demonstrated that maximum displacement was found to be significantly reduced by an average of 79%when SMA bars were used.Incorporating SMA bars with a larger diameter significantly improves the efficiency of SMA HDRB systems,and a reduction in maximum displacements is more pronounced for fling step,near-fault ground motions. 展开更多
关键词 HDRB Cu-Al-Be-SMA Ni-Ti-SMA residual displacement near-fault ground motions
在线阅读 下载PDF
Hydrodynamic Behavior of a Trawl Codend and its Fluttering Motions in Flume Tank
2
作者 Bruno Thierry Nyatchouba Nsangue Tang Hao +6 位作者 Tcham Leopold Ruben Mouangue Jian Zhang Wei Liu Achille Njomoue Pandong Liuxiong Xu Fuxiang Hu 《哈尔滨工程大学学报(英文版)》 2025年第2期345-369,共25页
This study experimentally investigates the hydrodynamic characteristics,geometric configurations,fluttering motions of the codend,and the instantaneous flow fields inside and around the codend,with and without a liner... This study experimentally investigates the hydrodynamic characteristics,geometric configurations,fluttering motions of the codend,and the instantaneous flow fields inside and around the codend,with and without a liner,under varying catch sizes and inflow velocities.A proper orthogonal decomposition method is employed to extract phase-averaged mean properties of unsteady turbulent flows from flow measurement data obtained using an electromagnetic current velocity meter inside and around the codend.The results reveal that as catch size increases,the drag force,codend motion,Reynolds number,and codend volume increase while the drag coefficient decreases.Owing to the codend shape and pronounced motion,a complex fluid–structure interaction occurs,demonstrating a strong correlation between drag force and codend volume.The oscillation amplitudes of the hydrodynamic forces and codend motions increase with increasing catch size,and their oscillations mainly involve low-frequency activity.A significant reduction in the flow field occurs inside and around the unlined codend without a catch.The flow field is 5.81%,14.39%,and 27.01%lower than the unlined codend with a catch,the codend with a liner but without a catch,and the codend with both a liner and a catch,respectively.Fourier analysis reveals that the codend motions and hydrodynamic forces are mainly characterized by low-frequency activity and are synchronized with the unsteady turbulent flow street.Furthermore,the proper orthogonal decomposition results reveal the development of unsteady turbulent flow inside and around the codend,driven by flow passage blockage caused by the presence of the liner,intense codend motions,and the catch.Understanding the hydrodynamic characteristics and flow instabilities inside and around the codend,particularly those associated with its fluttering motions,is crucial for optimizing trawl design and improving trawl selectivity. 展开更多
关键词 Trawl codend Hydrodynamic characteristics Proper orthogonal decomposition Fluttering motions Unsteady turbulent flow
在线阅读 下载PDF
Impact of Various Coupled Motions on the Aerodynamic Performance of a Floating Offshore Wind Turbine Within the Wind–Rain Field
3
作者 Yazhou Wang Yalong Guo +1 位作者 Xujiang Xia Ning Zhuang 《哈尔滨工程大学学报(英文版)》 2025年第2期370-387,共18页
This study employed a computational fluid dynamics model with an overset mesh technique to investigate the thrust and power of a floating offshore wind turbine(FOWT)under platform floating motion in the wind–rain fie... This study employed a computational fluid dynamics model with an overset mesh technique to investigate the thrust and power of a floating offshore wind turbine(FOWT)under platform floating motion in the wind–rain field.The impact of rainfall on aerodynamic performance was initially examined using a stationary turbine model in both wind and wind–rain conditions.Subsequently,the study compared the FOWT’s performance under various single degree-of-freedom(DOF)motions,including surge,pitch,heave,and yaw.Finally,the combined effects of wind–rain fields and platform motions involving two DOFs on the FOWT’s aerodynamics were analyzed and compared.The results demonstrate that rain negatively impacts the aerodynamic performance of both the stationary turbines and FOWTs.Pitch-dominated motions,whether involving single or multiple DOFs,caused significant fluctuations in the FOWT aerodynamics.The combination of surge and pitch motions created the most challenging operational environment for the FOWT in all tested scenarios.These findings highlighted the need for stronger construction materials and greater ultimate bearing capacity for FOWTs,as well as the importance of optimizing designs to mitigate excessive pitch and surge. 展开更多
关键词 Floating offshore wind turbine Aerodynamic performance Coupled motions Wind–rain field
在线阅读 下载PDF
Seismic isolation design and resilience improvement of railway station considering the influence of near-fault pulse-like ground motions
4
作者 Pan Yi Song Jiayu +1 位作者 Chen Qi Liu Yongxin 《Earthquake Engineering and Engineering Vibration》 2025年第1期257-270,共14页
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s... To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience. 展开更多
关键词 railway station near-fault pulse-like ground motion isolation design seismic resilience resilience improvement
在线阅读 下载PDF
Empirical correlation between the elastic input energy and typical intensity measures for offshore ground motions
5
作者 Hu Jinjun Tian Hao +2 位作者 Tan Jingyang Liu Mingji Jin Chaoyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期653-674,I0002-I0012,共33页
To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground moti... To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground motion records with moment magnitudes from 4.0 to 7.0 were used in this study.Residuals obtained through a ground motion model were calculated and analyzed for the correlation between V_(E) and amplitude,duration,frequency content and cumulative IMs.The results indicate that PGV and PGD have strong correlation with the V_(E)(T>0.2 s and T>0.4 s),the duration IMs have weakly negative correlation with the V_(E),Sd_(1) has a strong correlation with the V_(E) in the periods of T>0.4 s,T_(g) has a weak correlation with V_(E) and the cumulative IMs have strong correlation with the V_(E).The parametric predictive equations between typical IMs and V_(E) was proposed,and the differences between the prediction equations from the onshore ground motion records were compared.The differences in parametric predicted equations between offshore and onshore ground motions were confirmed in this study.Proposed correlation equations can be applied to offshore probabilistic seismic hazard analysis and the selection of ground motion records by generalized conditional intensity measures. 展开更多
关键词 input energy offshore ground motion intensity measures empirical correlation parametric prediction equations
在线阅读 下载PDF
Multiparameter Numerical Investigation of Two Types of Moving Interactions Between the Deep-Sea Mining Vehicle Track Plate and Seabed Soil:Digging and Rotating Motions 被引量:2
6
作者 SUN Peng-fei LYU Hai-ning +1 位作者 YANG Jian-min XU Zhi-yong 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期408-423,共16页
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions... To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate. 展开更多
关键词 deep-sea mining vehicle rotating motion digging motion track plate-seabed soil interaction CEL numerical method
在线阅读 下载PDF
Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence 被引量:2
7
作者 Tang Yuchuan Wang Jiankang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期35-50,共16页
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis... In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified. 展开更多
关键词 velocity pulse ground motion surface similarity ROCKING OVERTURNING
在线阅读 下载PDF
A Framework of LSTM Neural Network Model in Multi-Time Scale Real-Time Prediction of Ship Motions in Head Waves 被引量:1
8
作者 CHEN Zhan-yang ZHAN Zheng-yong +2 位作者 CHANG Shao-ping XU Shao-feng LIU Xing-yun 《船舶力学》 EI CSCD 北大核心 2024年第12期1803-1819,共17页
Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive act... Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions. 展开更多
关键词 deep learning LSTM ship motion real-time prediction irregular waves
在线阅读 下载PDF
Monitoring absolute vertical land motions and absolute sea-level changes from GPS and tide gauges data over French Polynesia
9
作者 Xianjie Li Jean-Pierre Barriot +2 位作者 Bernard Ducarme Marania Hopuare Yidong Lou 《Geodesy and Geodynamics》 EI CSCD 2024年第1期13-26,共14页
In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an... In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia. 展开更多
关键词 GPS Tide gauges Sea level changes Vertical land motion
原文传递
Seismic response and correlation analysis of a pile-supported wharf to near-fault pulse-like ground motions
10
作者 Wang Jianfeng Su Lei +2 位作者 Xie Libo Ling Xianzhang Ju Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期883-897,共15页
Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the ... Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs. 展开更多
关键词 pile-supported wharf correlation analysis near-fault pulse-like ground motion intensity measure seismic response
在线阅读 下载PDF
Time-Domain Higher-Order Boundary Element Method for Simulating High Forward-Speed Ship Motions in Waves
11
作者 ZHOU Xiao-guo CHENG Yong PAN Su-yong 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期904-914,共11页
The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo... The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles. 展开更多
关键词 high forward speed oblique incident waves ship motion higher-order boundary element method time domain wave field
在线阅读 下载PDF
The cumulative plastic deformation demand for buckling restrained braces imposed by the strong motions in the 2023 Türkiye earthquake sequence
12
作者 Fangzhan Gao Hanquan Liu Zhe Qu 《Earthquake Research Advances》 CSCD 2024年第4期92-101,共10页
The Türkiye earthquake sequence on February 6, 2023, was featured by the closely located earthquake doublet of M_(W)7.8 and M_(W)7.5. The consequent strong ground motions are supposed to be able to impose high de... The Türkiye earthquake sequence on February 6, 2023, was featured by the closely located earthquake doublet of M_(W)7.8 and M_(W)7.5. The consequent strong ground motions are supposed to be able to impose high demands on the ultra-low-cycle fatigue performance of metallic dampers in buildings, including the widely used buckling restrained braces. This study evaluates the cumulative plastic deformation(CPD) demands on bucklingrestrained braces(BRBs) in multi-story buildings imposed by the strong ground motions in the 2023 Türkiye earthquake doublet. Thirty-two records of the highest peak ground accelerations were selected from the strong motion database. Among them, eight captured the ground motions during both events, and the rest only captured the shaking of either of the events. The CPD demands on the BRBs in reinforced concrete frames with various fundamental periods, brace-to-frame stiffness ratios, and BRB ductility ratio are calculated by nonlinear time history analyses and are summarized in the form of enveloped spectra of CPD ratios at constant ductility. The results show that the CPD demands on BRBs increase with smaller brace-toframe stiffness ratios and larger BRB ductility ratios. The enveloped CPD demands are several hundreds of times the nominal yield deformation of the BRB, which are much higher than the CPD demands for the calibration tests of BRBs stipulated by AISC 341 in the US. 展开更多
关键词 Türkiye earthquakes Long duration ground motion Cumulative plastic strain Constant ductility Low-cycle fatigue
在线阅读 下载PDF
Direct use of peak ground motion parameters for the estimation of inelastic displacement ratio of SDOF systems subjected to repeated far fault ground motions 被引量:6
13
作者 Cengizhan Durucan Muhammed Gümüs 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期771-785,共15页
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par... This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar. 展开更多
关键词 C1 peak ground velocity peak ground acceleration far fault ground motions sequential ground motions
在线阅读 下载PDF
CALCULATING ACCURATE PERIODIC MOTIONS OF HARMONICALLY FORCED PIECEWISE LINEAR OSCILLATORS
14
作者 王福新 胡海岩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期23+19-22,共5页
This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the tradi... This paper presents an efficient numerical scheme for calculating the periodic motion of a harmonically forced piecewise linear oscillator very accurately. The scheme is based on the shooting technique with the traditional numerical Poincare mapping and its Jacobian replaced by the piecewise analytic ones. Thus, the scheme gets rid of the requirement of the current schemes for an assumed order of the oscillator trajectory passing through different linear regions. The numerical examples in the paper demonstrate that the new scheme, compared with the current schemes, enables one to cope with more complicated dynamics of harmonically forced piecewise linear oscillators. 展开更多
关键词 periodic motions numerical analysis piecewise linear oscillator shooting technique
在线阅读 下载PDF
Maxsurf Motions模块在船舶耐波性上的应用与验证 被引量:4
15
作者 张大朋 严谨 +1 位作者 赵博文 朱克强 《科学技术与工程》 北大核心 2023年第4期1734-1746,共13页
船舶作为海洋中最主要的运动物体,其在海浪中的运动问题,是船舶适航性、耐波性的基础,同时也是船舶设计建造中的关键步骤。采用Maxsurf Motions模块对4种国际标准船模进行了耐波性计算,验证了Maxsurf Motions中的切片理论和面元法的计... 船舶作为海洋中最主要的运动物体,其在海浪中的运动问题,是船舶适航性、耐波性的基础,同时也是船舶设计建造中的关键步骤。采用Maxsurf Motions模块对4种国际标准船模进行了耐波性计算,验证了Maxsurf Motions中的切片理论和面元法的计算精度与可靠性,探讨了Motions程序在船舶耐波性分析中的可行性,分析了Motions模块计算误差的原因。结果表明:Motions模块对船舶运动响应以及波浪增阻的计算精度基本令人满意。对于附加质量系数和阻尼系数,Motions在中高频波段的计算精度较高。研究成果对Maxsurf Motions的应用起到一定的借鉴和指导作用,同时也提供了一系列耐波性计算的验证算例。 展开更多
关键词 Maxsurf motions 运动响应 耐波性 切片理论 面元法
在线阅读 下载PDF
Error Modeling and Sensitivity Analysis of a Parallel Robot with SCARA(Selective Compliance Assembly Robot Arm) Motions 被引量:21
16
作者 CHEN Yuzhen XIE Fugui +1 位作者 LIU Xinjun ZHOU Yanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期693-702,共10页
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall... Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration. 展开更多
关键词 parallel robot selective compliance assembly robot arm(SCARA) motions error modeling sensitivity analysis parallelogram structure
在线阅读 下载PDF
Dominant pulse simulation of near fault ground motions 被引量:12
17
作者 S.R. Hoseini Vaez M.K. Sharbatdar +2 位作者 G. Ghodrati Amiri H. Naderpour A. Kheyroddin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期267-278,共12页
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve... In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility. 展开更多
关键词 dominant pulse near fault ground motions forward directivity response spectra SIMULATION
在线阅读 下载PDF
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites 被引量:8
18
作者 Li Chao Li Hongnan +2 位作者 Hao Hong Bi Kaiming Tian Li 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期475-490,共16页
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens... This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures. 展开更多
关键词 seismic motion simulation onshore and offshore sites ground motion spatial variation depth-varying motions transfer function
在线阅读 下载PDF
Simulation of spatially correlated earthquake ground motions for engineering purposes 被引量:7
19
作者 Wu Yongxin Gao Yufeng Li Dayong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期163-173,共11页
A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the ... A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads. 展开更多
关键词 ground motions simulation root operation incoherency effect wave-passage effect site-response effect
在线阅读 下载PDF
Numerical Prediction of Added Resistance and Vertical Ship Motions in Regular Head Waves 被引量:16
20
作者 Haixuan Ye Zhirong Shen Decheng Wan 《Journal of Marine Science and Application》 2012年第4期410-416,共7页
The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-S... The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths. 展开更多
关键词 added resistance vertical ship motions S-175 ship model naoe-FOAM-SJTU solver regular waves
在线阅读 下载PDF
上一页 1 2 206 下一页 到第
使用帮助 返回顶部