Sea cucumber, Apostichopus japonicus(Selenka), is a commercially important marine species in China. Among the differently colored varieties sold in China, white and purple sea cucumbers have the greatest appeal to c...Sea cucumber, Apostichopus japonicus(Selenka), is a commercially important marine species in China. Among the differently colored varieties sold in China, white and purple sea cucumbers have the greatest appeal to consumers. Identification of the pigments that may contribute to the formation of different color morphs of sea cucumbers will provide a scientific basis for improving the cultivability of desirable color morphs. In this study,sea cucumbers were divided into four categories according to their body color: white, light green, dark green, and purple. The pigment composition and contents in the four groups were analyzed by high performance liquid chromatography(HPLC). The results show that the pigment contents differed significantly among the white, lightgreen, dark-green, and purple sea cucumbers, and there were fewer types of pigments in white sea cucumber than in the other color morphs. The only pigments detected in white sea cucumbers were guanine and pteroic acid.Guanine and pteroic acid are structural colors, and they were also detected in light-green, dark-green, and purple sea cucumbers. Every pigment detected, except for pteroic acid, was present at a higher concentration in purple morphs than in the other color morphs. The biological color pigments melanin, astaxanthin, β-carotene, and lutein were detected in light-green, dark-green, and purple sea cucumbers. While progesterone and lycopene,which are also biological color pigments, were not detected in any of the color morphs. Melanin was the major pigment contributing to body color, and its concentration increased with deepening color of the sea cucumber body. Transmission electron microscopy analyses revealed that white sea cucumbers had the fewest epidermal melanocytes in the body wall, and their melanocytes contained fewer melanosomes as well as non-pigmented pre-melanosomes. Sea cucumbers with deeper body colors contained more melanin granules. In the body wall of dark-green and purple sea cucumbers, melanin granules were secreted out of the cell. The results of this study provide evidence for the main factors responsible for differences in coloration among white, light-green, darkgreen, and purple sea cucumbers, and also provide the foundation for further research on the formation of body color in sea cucumber, A. japonicus.展开更多
Basic haematological parameters were studied in adult, sexually mature individuals of colour morphs (striata and maculata) in the populations of Pelophylax ridibundus living in biotopes with various degrees of anthrop...Basic haematological parameters were studied in adult, sexually mature individuals of colour morphs (striata and maculata) in the populations of Pelophylax ridibundus living in biotopes with various degrees of anthropogenic pollution (control, domestic sewage pollution and heavy metal pollution) in Southern Bulgaria. We found that in the polluted biotopes in individuals of both morphs of P. ridibundus the blood parameters: erythrocyte (RBC) and leukocyte (WBS) count, haemoglobin concentration (Hb), haematocrit (PCV) were statistically reliably higher, the number of lymphocytes (Ly) decreased, and the parameters: mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC), mean cell volume (MCV) and differential blood formula changed considerably in comparison with the control group. In terms of anthropogenic pollution, the average values of RBC and Hb were higher in P. ridibundus of striata morph.展开更多
Color polymorphisms are widely studied to identify the mechanisms responsible for the origin and maintenance of phenotypic variability in nature.Two of the mechanisms of balancing selection currently thought to explai...Color polymorphisms are widely studied to identify the mechanisms responsible for the origin and maintenance of phenotypic variability in nature.Two of the mechanisms of balancing selection currently thought to explain the long-term persistence of polymorphisms are the evolution of alternative phenotypic optima through correlational selection on suites of traits including color and heterosis.Both of these mechanisms can generate differences in offspring viability and fitness arising from different morph combinations.Here,we examined the effect of parental morph combination on fertilization success,embryonic viability,newborn quality,antipredator,and foraging behavior,as well as inter-annual survival by conducting controlled matings in a polymorphic lacertid Podarcis muralis,where color morphs are frequently assumed to reflect alternative phenotypic optima(e.g.,alternative reproductive strategies).Juveniles were kept in outdoor tubs for a year in order to study inter-annual growth,survival,and morph inheritance.In agreement with a previous genome-wide association analysis,morph frequencies in the year-old juveniles matched the frequencies expected if orange and yellow expressions depended on recessive homozygosity at 2 separate loci.Our findings also agree with previous literature reporting higher reproductive output of heavy females and the higher overall viability of heavy newborn lizards,but we found no evidence for the existence of alternative breeding investment strategies in female morphs,or morphcombination effects on offspring viability and behavior.We conclude that inter-morph breeding remains entirely viable and genetic incompatibilities are of little significance for the maintenance of discrete color morphs in P.muralis from the Pyrenees.展开更多
Cimicifuga simplex Wormsk. (Ranunculaceae) is a perennial herb distributed in eastern and northeastern Asia for which at least three different pollination morphs have been reported. It is classified as endangered or n...Cimicifuga simplex Wormsk. (Ranunculaceae) is a perennial herb distributed in eastern and northeastern Asia for which at least three different pollination morphs have been reported. It is classified as endangered or near threatened in some Japanese regions, and its rhizome is commercially used as a crude drug. To examine genetic differentiation and gene flow among the three morphs, we developed eight microsatellite markers by using next-generation sequencing and estimated the genetic structure of C. simplex. We tested eight primer pairs on 93 individuals from six populations of C. simplex in Nagano, central Japan, and found that heterozygosity in morphs I and III was low compared to expected heterozygosity. Bayesian clustering performed with the STRUCTURE program clearly distinguished the three morphs of C. simplex, and only a little gene flow was detected among the morphs. These eight microsatellite markers are expected to be useful in conservation genetic studies of this species and for future conservation planning.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
It has been proposed that given that males should invest in sexual traits at the expense of their investment in immune response, females are better immunocompetent than males. Typically, this idea has been tested in m...It has been proposed that given that males should invest in sexual traits at the expense of their investment in immune response, females are better immunocompetent than males. Typically, this idea has been tested in monomorphic species, but rarely has been evaluated in polymorphic male species. We used Paraphlebia zoe, a damselfly with two male morphs: the black-winged morph (Black-W) develop black spots as sexual traits and the hyaline-winged morph (Hyaline-W) resembles a female in size and wings color. We predicted that Black-W should have a lower immune response than Hyaline-W, but that the latter males should not differ from females in this respect. Nitric oxide (NO) and phenoloxidase (PO) production, as well as hemolymph protein content, were used as immune markers. Body size (wing length) was used as an indicator of the male condition. The results show that, as we predicted, females and Hyaline-W had higher values of NO than Black-W, corresponding to differences in size. However, the opposite was found in relation to PO production. Females had the highest levels of hemolymph protein content, whereas no differences were found between Black-W and Hyaline-W. These results partially support the sexual selection hypothesis and are discussed in the context of the life history of this species. Black-W, Hyaline-W, and females could express the immune markers that are prioritized by their particular condition, and probably neither of them could express all immune markers in an elevated manner, as this would result in an excessive accumulation of free radicals.展开更多
Fixed-wing long-endurance aircraft play an important role in many fields.However,to reduce drag,these aircraft often have an enormous aspect ratio and wingspan,leading to challenges such as high requirements for takeo...Fixed-wing long-endurance aircraft play an important role in many fields.However,to reduce drag,these aircraft often have an enormous aspect ratio and wingspan,leading to challenges such as high requirements for takeoff and landing sites and poor wind resistance.Morphing may be able to solve this problem,but conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high.First,this article develops a high-aspect-ratio aircraft with aerodynamic-driven morphing and validates the rationality and feasibility of this concept through flight tests.Then,focusing on the RQ-4‘‘Global Hawk”as the design baseline,the article explores multidisciplinary overall design methods for the aircraft,analyzing the comprehensive impact of morphing on aerodynamic,structural,and flight control design.Finally,the article elaborates on the benefits and costs associated with aerodynamic-driven morphing.展开更多
Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process...Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high,even exceeding the benefit of morphing.Especially for high aspect ratio aircraft with large root bending moments,it is very difficult for actuators to directly drive wing deformation.To address this issue,aerodynamic forces generated by control surface deflection can be utilized as an alternative to actuator-driven morphing.This approach reduces the overall cost of morphing while enhancing its benefits.This novel aerodynamic-driven morphing technique imposes new requirements and challenges on the aerodynamic design of aircraft.With a combination of flight experiments and numerical simulations,this article analyzes the variations in aerodynamic forces during the aerodynamic-driven process.Using a high aspect ratio longendurance UAV as the design baseline,the design method of the control surface for aerodynamic-driven morphing is also discussed.展开更多
Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material...Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material and geometric large deformation,the SMA honeycomb exhibits significant and complex nonlinearity in the skin and there is a lack of relevant previous research.In this paper,the nonlinear properties of the SMA honeycomb structure with arbitrary geometry are investigated for the first time for large deformation flexible skin applications by theoretical and experimental analysis.Firstly,a novel theoretical model of SMA honeycomb structure considering both material and geometric nonlinearity is proposed,and the corresponding calculation method of nonlinear governing equations is given based upon the shooting method and Runge–Kutta method.Then,the tensile behaviors of four kinds of SMA honeycomb structures,i.e.,U-type,V-type,cosine-type,and trapezoid-type,are analyzed and predicted by the proposed theoretical model and compared with the finite element analysis(FEA)results.Moreover,the tensile experiments were carried out by stretching U-type and V-type honeycomb structures to a global strain of 60%and 40%,respectively,to perform large deformation analysis and verify the theoretical model.Finally,experimental verification and finite element validation show that the curves of the theoretical model results,experimental results,and simulation results are in good agreement,illustrating the generalizability and accuracy of the proposed theoretical model.The theoretical model and experimental investigations in this paper are considered to provide an effective foundation for analyzing and predicting the mechanical behavior of SMA honeycomb flexible skins with large extensional deformations.展开更多
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance b...Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.展开更多
This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-dis...This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.展开更多
This paper aims to design a morphing wing with both Flexible Leading Edge(FLE)and Flexible Trailing Edge(FTE)by using cellular structures,which can help the wing boost the deformation to a greater extent on the premis...This paper aims to design a morphing wing with both Flexible Leading Edge(FLE)and Flexible Trailing Edge(FTE)by using cellular structures,which can help the wing boost the deformation to a greater extent on the premise that the weight is not changed,so as to play a greater role in aerodynamic control such as gust interference.First,as for structural design,based on NACA0012,a morphing wing model constructed by 3 forms of cell structures is proposed.Then,the aerodynamic characteristics under the interference of FLE and FTE are calculated by the Computational Fluid Dynamic(CFD)method.After the surrogate model is established to predict the lift coefficient of the wing effectively,the sensitivity analysis reveals that the main sensitivity index of FTE deflection angle β is 0.565,which has the greatest influence on the lift coefficient.And the total sensitivity index of FLE deflection angle γ is increased by 78.9%,which reveals a strong coupling relationship between FLE and FTE.Finally,using Finite Element Analysis(FEA)method and experiment,the deformation capability of the model under certain static loads are obtained.The results reveal that the maximum deflection angle of the morphing wing model can be±22°at FLE and±64°at FTE,indicating strong structural stiffness and resistance to bending breakage of the model.The presented results can be useful in the design of the cellular morphing wing with multiple flexible systems.展开更多
Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent ...Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent a key research aspect for morphing aircraft,since they can lead to potential improvements in flight range,maneuverability,load alleviation and airport compatibility.This paper proposes a hinge mechanism design for folding wingtips based on the shape memory alloy torsion tube,aiming to achieve successful folding using the actuation effect of the shape memory alloy.The proposed design employs a shape memory alloy torsion tube as the actuator for the active folding of the wingtip,which is motivated by the characteristics of the tube,enabling a simplified structure for the integration with high energy density.Through numerical simulation and testing of the folding wingtip structure,the concept is verified,which shows its potential as an actuator for folding wingtips.展开更多
Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 + 1℃,65% ± 5% relative humidity and a photoperiod of 16 ...Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 + 1℃,65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infectedwith virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performedsignificantly better when fed on BYDV-infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore,when fed on BYDV-infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There wereno significant differences in this respect between the two color morphs ofS. avenae when they were reared on virus-free plants that either had been or not been previously infestedwith aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs ofS. avenae tested, particularly the green color morph.展开更多
Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed ...Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed at safe and fuel-saving flight through morphing actively.Specifically,the longitudinal dynamics of a morphing aircraft with telescopic wings is modelled as a strict-feedback nonlinear system.Through fitting the expression of aerodynamic parameters by the mor-phing ratio,the model uncertainties induced by morphing errors are embedded in the dynamics.To meet the safety and fuel-saving requirements,an Adaptive Coordinated Tracking Control Scheme(ACTCS)is then proposed,which consists of a morphing control module and a tracking control module.For the morphing control module,an on-line morphing decision model is given in an optimization process with respect to the morphing ratio,and a second-order tracking filter is introduced to smooth the decision output and ensure the physical realizability.For the tracking control module,the novel adaptive controllers for the velocity and altitude subsystems are proposed based on the dynamic surface control method,in which adaptive mechanisms are designed to com-pensate for the model uncertainties.Finally,the proposed ACTCS is simulated in nine different cases of the test flight mission,to verify its effectiveness,robustness and fuel-saving effect.展开更多
This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft t...This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.展开更多
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno...The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses.展开更多
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of pr...This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.展开更多
Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing l...Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing leading-edge concept.This study proposes a two-step process for the design of a morphing leading-edge,including the optimization of the outer variable-thickness composite compliant skin and the optimization of the inner kinematic mechanism.For the compliant skin design,an optimization of the variable thickness composite skin is proposed based on a laminate continuity model,with laminate continuity constraint and other manufacturing constraints.The laminate continuity model utilizes a guiding sequence and a ply-drop sequence to describe the overall stacking sequence of plies in different thickness regions of the complaint skin.For the inner kinematic mechanism design,a coupled four-bar linkage system is proposed and optimized to produce specific trajectories at the actuation points on the stringer hats of the compliant skin,which ensures that the compliant skin can be deflected into the aerodynamically optimal profile.Finally,a morphing leading-edge is manufactured and tested.Experimental results are compared with numerical predictions,confirming the feasibility of the morphing leading-edge concept and the overall proposed design approach.展开更多
基金The Agricultural Seed Project of Shandong Province
文摘Sea cucumber, Apostichopus japonicus(Selenka), is a commercially important marine species in China. Among the differently colored varieties sold in China, white and purple sea cucumbers have the greatest appeal to consumers. Identification of the pigments that may contribute to the formation of different color morphs of sea cucumbers will provide a scientific basis for improving the cultivability of desirable color morphs. In this study,sea cucumbers were divided into four categories according to their body color: white, light green, dark green, and purple. The pigment composition and contents in the four groups were analyzed by high performance liquid chromatography(HPLC). The results show that the pigment contents differed significantly among the white, lightgreen, dark-green, and purple sea cucumbers, and there were fewer types of pigments in white sea cucumber than in the other color morphs. The only pigments detected in white sea cucumbers were guanine and pteroic acid.Guanine and pteroic acid are structural colors, and they were also detected in light-green, dark-green, and purple sea cucumbers. Every pigment detected, except for pteroic acid, was present at a higher concentration in purple morphs than in the other color morphs. The biological color pigments melanin, astaxanthin, β-carotene, and lutein were detected in light-green, dark-green, and purple sea cucumbers. While progesterone and lycopene,which are also biological color pigments, were not detected in any of the color morphs. Melanin was the major pigment contributing to body color, and its concentration increased with deepening color of the sea cucumber body. Transmission electron microscopy analyses revealed that white sea cucumbers had the fewest epidermal melanocytes in the body wall, and their melanocytes contained fewer melanosomes as well as non-pigmented pre-melanosomes. Sea cucumbers with deeper body colors contained more melanin granules. In the body wall of dark-green and purple sea cucumbers, melanin granules were secreted out of the cell. The results of this study provide evidence for the main factors responsible for differences in coloration among white, light-green, darkgreen, and purple sea cucumbers, and also provide the foundation for further research on the formation of body color in sea cucumber, A. japonicus.
文摘Basic haematological parameters were studied in adult, sexually mature individuals of colour morphs (striata and maculata) in the populations of Pelophylax ridibundus living in biotopes with various degrees of anthropogenic pollution (control, domestic sewage pollution and heavy metal pollution) in Southern Bulgaria. We found that in the polluted biotopes in individuals of both morphs of P. ridibundus the blood parameters: erythrocyte (RBC) and leukocyte (WBS) count, haemoglobin concentration (Hb), haematocrit (PCV) were statistically reliably higher, the number of lymphocytes (Ly) decreased, and the parameters: mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC), mean cell volume (MCV) and differential blood formula changed considerably in comparison with the control group. In terms of anthropogenic pollution, the average values of RBC and Hb were higher in P. ridibundus of striata morph.
基金The study was supported in part by grant PID2019-104721GB-I00 of the Spanish Ministerio de Ciencia e Innovacion to EF and GPL and from the University of Valencia(UV-19-INV-AE19)FEDER through the COMPETE program(ref.008929)+7 种基金the Swedish Research Council(2017-03846)the Knut and Alice Wallenberg Foundation(Wallenberg Academy fellowship to T.U.),Portuguese national funds through the FCT project PTDC/BIA-EVL/30288/2017-NORTE-01-0145-FEDER-30288co-funded by NORTE2020 through Portugal 2020 and FEDER Funds and by National Funds through FCTby the Laboratoire d’Excellence(LABEX)TULIP(ANR-10-LABX-41)and the INTERREG POCTEFA ECTOPYR(EFA031/15)This work has also benefitted from state aid managed by the French national research agency under the Future Investments program bearing the reference ANR-11-INBS-0001AnaEE-ServicesLizards were captured under research permits number 2013095-0001 from the Prefecture des Pyrenees-Orientales,and permit numbers 2016-s-09 and 2017-s-02 from the Prefecture des Pyrenees-Orientales and the Prefecture de l’Ariege(Direction Regionale de l’Environnement,de l’Amenagement,et du Logement,Occitanie)This research complied with the ASAB/ABS Guidelines for the Use of Animals in Research and all applicable local,national,and European legislation.J.A.was supported by a FPU predoctoral fellowship from the Spanish Ministerio de Educacion(FPU15/01388).G.P.L.was supported by post-doctoral grants Juan de la Cierva-Incorporacion,IJC2018-035319-I(from the Spanish Ministerio de Ciencia,Inovacio n y Universidades)grant SFRH/BPD/94582/2013 by Fundacao para a Ciencia e a Tecnologia under the Programa Operacional Potencial Humano–Quadro de Referencia Estrategico Nacional,funds from the European Social Fund and Portuguese Ministerio da Educac¸~ao e Cieˆncia.
文摘Color polymorphisms are widely studied to identify the mechanisms responsible for the origin and maintenance of phenotypic variability in nature.Two of the mechanisms of balancing selection currently thought to explain the long-term persistence of polymorphisms are the evolution of alternative phenotypic optima through correlational selection on suites of traits including color and heterosis.Both of these mechanisms can generate differences in offspring viability and fitness arising from different morph combinations.Here,we examined the effect of parental morph combination on fertilization success,embryonic viability,newborn quality,antipredator,and foraging behavior,as well as inter-annual survival by conducting controlled matings in a polymorphic lacertid Podarcis muralis,where color morphs are frequently assumed to reflect alternative phenotypic optima(e.g.,alternative reproductive strategies).Juveniles were kept in outdoor tubs for a year in order to study inter-annual growth,survival,and morph inheritance.In agreement with a previous genome-wide association analysis,morph frequencies in the year-old juveniles matched the frequencies expected if orange and yellow expressions depended on recessive homozygosity at 2 separate loci.Our findings also agree with previous literature reporting higher reproductive output of heavy females and the higher overall viability of heavy newborn lizards,but we found no evidence for the existence of alternative breeding investment strategies in female morphs,or morphcombination effects on offspring viability and behavior.We conclude that inter-morph breeding remains entirely viable and genetic incompatibilities are of little significance for the maintenance of discrete color morphs in P.muralis from the Pyrenees.
文摘Cimicifuga simplex Wormsk. (Ranunculaceae) is a perennial herb distributed in eastern and northeastern Asia for which at least three different pollination morphs have been reported. It is classified as endangered or near threatened in some Japanese regions, and its rhizome is commercially used as a crude drug. To examine genetic differentiation and gene flow among the three morphs, we developed eight microsatellite markers by using next-generation sequencing and estimated the genetic structure of C. simplex. We tested eight primer pairs on 93 individuals from six populations of C. simplex in Nagano, central Japan, and found that heterozygosity in morphs I and III was low compared to expected heterozygosity. Bayesian clustering performed with the STRUCTURE program clearly distinguished the three morphs of C. simplex, and only a little gene flow was detected among the morphs. These eight microsatellite markers are expected to be useful in conservation genetic studies of this species and for future conservation planning.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
文摘It has been proposed that given that males should invest in sexual traits at the expense of their investment in immune response, females are better immunocompetent than males. Typically, this idea has been tested in monomorphic species, but rarely has been evaluated in polymorphic male species. We used Paraphlebia zoe, a damselfly with two male morphs: the black-winged morph (Black-W) develop black spots as sexual traits and the hyaline-winged morph (Hyaline-W) resembles a female in size and wings color. We predicted that Black-W should have a lower immune response than Hyaline-W, but that the latter males should not differ from females in this respect. Nitric oxide (NO) and phenoloxidase (PO) production, as well as hemolymph protein content, were used as immune markers. Body size (wing length) was used as an indicator of the male condition. The results show that, as we predicted, females and Hyaline-W had higher values of NO than Black-W, corresponding to differences in size. However, the opposite was found in relation to PO production. Females had the highest levels of hemolymph protein content, whereas no differences were found between Black-W and Hyaline-W. These results partially support the sexual selection hypothesis and are discussed in the context of the life history of this species. Black-W, Hyaline-W, and females could express the immune markers that are prioritized by their particular condition, and probably neither of them could express all immune markers in an elevated manner, as this would result in an excessive accumulation of free radicals.
基金supported by the National Natural Science Foundation of China(No.92741205)。
文摘Fixed-wing long-endurance aircraft play an important role in many fields.However,to reduce drag,these aircraft often have an enormous aspect ratio and wingspan,leading to challenges such as high requirements for takeoff and landing sites and poor wind resistance.Morphing may be able to solve this problem,but conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high.First,this article develops a high-aspect-ratio aircraft with aerodynamic-driven morphing and validates the rationality and feasibility of this concept through flight tests.Then,focusing on the RQ-4‘‘Global Hawk”as the design baseline,the article explores multidisciplinary overall design methods for the aircraft,analyzing the comprehensive impact of morphing on aerodynamic,structural,and flight control design.Finally,the article elaborates on the benefits and costs associated with aerodynamic-driven morphing.
基金supported by the National Natural Science Foundation of China(No.92741205).
文摘Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high,even exceeding the benefit of morphing.Especially for high aspect ratio aircraft with large root bending moments,it is very difficult for actuators to directly drive wing deformation.To address this issue,aerodynamic forces generated by control surface deflection can be utilized as an alternative to actuator-driven morphing.This approach reduces the overall cost of morphing while enhancing its benefits.This novel aerodynamic-driven morphing technique imposes new requirements and challenges on the aerodynamic design of aircraft.With a combination of flight experiments and numerical simulations,this article analyzes the variations in aerodynamic forces during the aerodynamic-driven process.Using a high aspect ratio longendurance UAV as the design baseline,the design method of the control surface for aerodynamic-driven morphing is also discussed.
基金supported by the National Key Research and Development Program of China(No.2020YFB1708303)the National Natural Science Foundation of China(Nos.U1808215 and 12072058)the Fundamental Research Funds for the Central Universities of China(DUT20LK02).
文摘Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material and geometric large deformation,the SMA honeycomb exhibits significant and complex nonlinearity in the skin and there is a lack of relevant previous research.In this paper,the nonlinear properties of the SMA honeycomb structure with arbitrary geometry are investigated for the first time for large deformation flexible skin applications by theoretical and experimental analysis.Firstly,a novel theoretical model of SMA honeycomb structure considering both material and geometric nonlinearity is proposed,and the corresponding calculation method of nonlinear governing equations is given based upon the shooting method and Runge–Kutta method.Then,the tensile behaviors of four kinds of SMA honeycomb structures,i.e.,U-type,V-type,cosine-type,and trapezoid-type,are analyzed and predicted by the proposed theoretical model and compared with the finite element analysis(FEA)results.Moreover,the tensile experiments were carried out by stretching U-type and V-type honeycomb structures to a global strain of 60%and 40%,respectively,to perform large deformation analysis and verify the theoretical model.Finally,experimental verification and finite element validation show that the curves of the theoretical model results,experimental results,and simulation results are in good agreement,illustrating the generalizability and accuracy of the proposed theoretical model.The theoretical model and experimental investigations in this paper are considered to provide an effective foundation for analyzing and predicting the mechanical behavior of SMA honeycomb flexible skins with large extensional deformations.
基金Supported by the Bavarian Academic Forum(BayWISS),as a part of the joint academic partnership digitalization program.
文摘Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.
基金co-supported by the National Natural Science Foundation of China(No.12472332)。
文摘This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.
基金co-supported by the National Natural Science Foundation of China(No.52402460)project funded by the China Postdoctoral Science Foundation(No.2024T171113)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This paper aims to design a morphing wing with both Flexible Leading Edge(FLE)and Flexible Trailing Edge(FTE)by using cellular structures,which can help the wing boost the deformation to a greater extent on the premise that the weight is not changed,so as to play a greater role in aerodynamic control such as gust interference.First,as for structural design,based on NACA0012,a morphing wing model constructed by 3 forms of cell structures is proposed.Then,the aerodynamic characteristics under the interference of FLE and FTE are calculated by the Computational Fluid Dynamic(CFD)method.After the surrogate model is established to predict the lift coefficient of the wing effectively,the sensitivity analysis reveals that the main sensitivity index of FTE deflection angle β is 0.565,which has the greatest influence on the lift coefficient.And the total sensitivity index of FLE deflection angle γ is increased by 78.9%,which reveals a strong coupling relationship between FLE and FTE.Finally,using Finite Element Analysis(FEA)method and experiment,the deformation capability of the model under certain static loads are obtained.The results reveal that the maximum deflection angle of the morphing wing model can be±22°at FLE and±64°at FTE,indicating strong structural stiffness and resistance to bending breakage of the model.The presented results can be useful in the design of the cellular morphing wing with multiple flexible systems.
基金supported by the National Natural Science Foundation of China(No.52305262)the Aeronautical Science Foundation of China(No.20230015052002)the Fundamental Research Funds for the Central Universities(No.NT2024001)。
文摘Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent a key research aspect for morphing aircraft,since they can lead to potential improvements in flight range,maneuverability,load alleviation and airport compatibility.This paper proposes a hinge mechanism design for folding wingtips based on the shape memory alloy torsion tube,aiming to achieve successful folding using the actuation effect of the shape memory alloy.The proposed design employs a shape memory alloy torsion tube as the actuator for the active folding of the wingtip,which is motivated by the characteristics of the tube,enabling a simplified structure for the integration with high energy density.Through numerical simulation and testing of the folding wingtip structure,the concept is verified,which shows its potential as an actuator for folding wingtips.
文摘Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 + 1℃,65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infectedwith virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performedsignificantly better when fed on BYDV-infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore,when fed on BYDV-infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There wereno significant differences in this respect between the two color morphs ofS. avenae when they were reared on virus-free plants that either had been or not been previously infestedwith aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs ofS. avenae tested, particularly the green color morph.
基金co-supported by the National Natural Science Foundation of China(Nos.62203033,62273024,62073016)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ23F030020,LZ22F030012)+1 种基金the Defense Industrial Technology Development Program,China(No.JCKY2021601B016)the Equipment Pre-research Key Laboratory Foundation,China(No.JSY6142219202210)。
文摘Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed at safe and fuel-saving flight through morphing actively.Specifically,the longitudinal dynamics of a morphing aircraft with telescopic wings is modelled as a strict-feedback nonlinear system.Through fitting the expression of aerodynamic parameters by the mor-phing ratio,the model uncertainties induced by morphing errors are embedded in the dynamics.To meet the safety and fuel-saving requirements,an Adaptive Coordinated Tracking Control Scheme(ACTCS)is then proposed,which consists of a morphing control module and a tracking control module.For the morphing control module,an on-line morphing decision model is given in an optimization process with respect to the morphing ratio,and a second-order tracking filter is introduced to smooth the decision output and ensure the physical realizability.For the tracking control module,the novel adaptive controllers for the velocity and altitude subsystems are proposed based on the dynamic surface control method,in which adaptive mechanisms are designed to com-pensate for the model uncertainties.Finally,the proposed ACTCS is simulated in nine different cases of the test flight mission,to verify its effectiveness,robustness and fuel-saving effect.
基金funded by Abu Dhabi Education Council Award for Research Excellence Program (AARE 2019) _(No. AARE19-213)by Khalifa University of Science and Technology through Faculty Start-up Award (No. FSU-2020-20)。
文摘This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.
基金carried out in the framework of AIRGREEN2 Project,which gratefully received funding from the Clean Sky 2 Joint Undertaking,under the European’s Union Horizon 2020 Research and Innovation Program,Grant Agreement(No.807089—REG GAM 4822018—H2020-IBA-CS2-GAMS-2017)funded by TUBITAK 2214-A-International Research Fellowship Programme for Ph.D.Students。
文摘The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses.
基金supported by the National Natural Science Foundation of China (Nos. 52233014, U2241215)。
文摘This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
基金supported by the National Research Project“Variable CAmber wing TechNology(VCAN)”,China.
文摘Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing leading-edge concept.This study proposes a two-step process for the design of a morphing leading-edge,including the optimization of the outer variable-thickness composite compliant skin and the optimization of the inner kinematic mechanism.For the compliant skin design,an optimization of the variable thickness composite skin is proposed based on a laminate continuity model,with laminate continuity constraint and other manufacturing constraints.The laminate continuity model utilizes a guiding sequence and a ply-drop sequence to describe the overall stacking sequence of plies in different thickness regions of the complaint skin.For the inner kinematic mechanism design,a coupled four-bar linkage system is proposed and optimized to produce specific trajectories at the actuation points on the stringer hats of the compliant skin,which ensures that the compliant skin can be deflected into the aerodynamically optimal profile.Finally,a morphing leading-edge is manufactured and tested.Experimental results are compared with numerical predictions,confirming the feasibility of the morphing leading-edge concept and the overall proposed design approach.