Fixed-wing long-endurance aircraft play an important role in many fields.However,to reduce drag,these aircraft often have an enormous aspect ratio and wingspan,leading to challenges such as high requirements for takeo...Fixed-wing long-endurance aircraft play an important role in many fields.However,to reduce drag,these aircraft often have an enormous aspect ratio and wingspan,leading to challenges such as high requirements for takeoff and landing sites and poor wind resistance.Morphing may be able to solve this problem,but conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high.First,this article develops a high-aspect-ratio aircraft with aerodynamic-driven morphing and validates the rationality and feasibility of this concept through flight tests.Then,focusing on the RQ-4‘‘Global Hawk”as the design baseline,the article explores multidisciplinary overall design methods for the aircraft,analyzing the comprehensive impact of morphing on aerodynamic,structural,and flight control design.Finally,the article elaborates on the benefits and costs associated with aerodynamic-driven morphing.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process...Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high,even exceeding the benefit of morphing.Especially for high aspect ratio aircraft with large root bending moments,it is very difficult for actuators to directly drive wing deformation.To address this issue,aerodynamic forces generated by control surface deflection can be utilized as an alternative to actuator-driven morphing.This approach reduces the overall cost of morphing while enhancing its benefits.This novel aerodynamic-driven morphing technique imposes new requirements and challenges on the aerodynamic design of aircraft.With a combination of flight experiments and numerical simulations,this article analyzes the variations in aerodynamic forces during the aerodynamic-driven process.Using a high aspect ratio longendurance UAV as the design baseline,the design method of the control surface for aerodynamic-driven morphing is also discussed.展开更多
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance b...Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.展开更多
This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-dis...This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.展开更多
This paper aims to design a morphing wing with both Flexible Leading Edge(FLE)and Flexible Trailing Edge(FTE)by using cellular structures,which can help the wing boost the deformation to a greater extent on the premis...This paper aims to design a morphing wing with both Flexible Leading Edge(FLE)and Flexible Trailing Edge(FTE)by using cellular structures,which can help the wing boost the deformation to a greater extent on the premise that the weight is not changed,so as to play a greater role in aerodynamic control such as gust interference.First,as for structural design,based on NACA0012,a morphing wing model constructed by 3 forms of cell structures is proposed.Then,the aerodynamic characteristics under the interference of FLE and FTE are calculated by the Computational Fluid Dynamic(CFD)method.After the surrogate model is established to predict the lift coefficient of the wing effectively,the sensitivity analysis reveals that the main sensitivity index of FTE deflection angle β is 0.565,which has the greatest influence on the lift coefficient.And the total sensitivity index of FLE deflection angle γ is increased by 78.9%,which reveals a strong coupling relationship between FLE and FTE.Finally,using Finite Element Analysis(FEA)method and experiment,the deformation capability of the model under certain static loads are obtained.The results reveal that the maximum deflection angle of the morphing wing model can be±22°at FLE and±64°at FTE,indicating strong structural stiffness and resistance to bending breakage of the model.The presented results can be useful in the design of the cellular morphing wing with multiple flexible systems.展开更多
Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent ...Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent a key research aspect for morphing aircraft,since they can lead to potential improvements in flight range,maneuverability,load alleviation and airport compatibility.This paper proposes a hinge mechanism design for folding wingtips based on the shape memory alloy torsion tube,aiming to achieve successful folding using the actuation effect of the shape memory alloy.The proposed design employs a shape memory alloy torsion tube as the actuator for the active folding of the wingtip,which is motivated by the characteristics of the tube,enabling a simplified structure for the integration with high energy density.Through numerical simulation and testing of the folding wingtip structure,the concept is verified,which shows its potential as an actuator for folding wingtips.展开更多
Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed ...Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed at safe and fuel-saving flight through morphing actively.Specifically,the longitudinal dynamics of a morphing aircraft with telescopic wings is modelled as a strict-feedback nonlinear system.Through fitting the expression of aerodynamic parameters by the mor-phing ratio,the model uncertainties induced by morphing errors are embedded in the dynamics.To meet the safety and fuel-saving requirements,an Adaptive Coordinated Tracking Control Scheme(ACTCS)is then proposed,which consists of a morphing control module and a tracking control module.For the morphing control module,an on-line morphing decision model is given in an optimization process with respect to the morphing ratio,and a second-order tracking filter is introduced to smooth the decision output and ensure the physical realizability.For the tracking control module,the novel adaptive controllers for the velocity and altitude subsystems are proposed based on the dynamic surface control method,in which adaptive mechanisms are designed to com-pensate for the model uncertainties.Finally,the proposed ACTCS is simulated in nine different cases of the test flight mission,to verify its effectiveness,robustness and fuel-saving effect.展开更多
This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft t...This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.展开更多
This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerod...This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.展开更多
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of pr...This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.展开更多
Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing l...Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing leading-edge concept.This study proposes a two-step process for the design of a morphing leading-edge,including the optimization of the outer variable-thickness composite compliant skin and the optimization of the inner kinematic mechanism.For the compliant skin design,an optimization of the variable thickness composite skin is proposed based on a laminate continuity model,with laminate continuity constraint and other manufacturing constraints.The laminate continuity model utilizes a guiding sequence and a ply-drop sequence to describe the overall stacking sequence of plies in different thickness regions of the complaint skin.For the inner kinematic mechanism design,a coupled four-bar linkage system is proposed and optimized to produce specific trajectories at the actuation points on the stringer hats of the compliant skin,which ensures that the compliant skin can be deflected into the aerodynamically optimal profile.Finally,a morphing leading-edge is manufactured and tested.Experimental results are compared with numerical predictions,confirming the feasibility of the morphing leading-edge concept and the overall proposed design approach.展开更多
The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flex...The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.展开更多
The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,...The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.展开更多
This paper focuses on the effect of the phase offset of Leading-Edge(LE)morphing on the aerodynamic characteristics of a pitching NACA0012 airfoil.Assuming an unstretched camber and using polynomial interpolation,an e...This paper focuses on the effect of the phase offset of Leading-Edge(LE)morphing on the aerodynamic characteristics of a pitching NACA0012 airfoil.Assuming an unstretched camber and using polynomial interpolation,an explicit expression for LE nonlinear morphing is proposed and implemented for the large pitching motion of the airfoil.Flow field results and aerodynamic forces are obtained by solving the unsteady Reynolds-averaged Navier-Stokes equations for both the airfoil’s pitching motion and LE morphing.Furthermore,the index of instantaneous aerodynamic power is used to quantify the work done by the airflow in a dynamic process.According to the instantaneous aerodynamic power and energy map,which denotes the energy transfer between the airfoil’s oscillation and flow field,the airfoil is subject to stall flutter.The results show that LE morphing with an optimal phase offset of 315°reduces the energy extraction from the flow field,suppressing the stall flutter instability.This optimal phase offset is effective at different pitching axis positions of the airfoil.The results signify that LE morphing can suppress stall flutter by advancing the occurrence of the first LE vortex and increasing the nose-down moment during the upstroke period.展开更多
Dynamic soaring,which harvests energy from the wind,can enhance Unmanned Aerial Vehicles'(UAVs')range and endurance.However,energy harvesting efficiency issues hinder UAV applications,which can be addressed by...Dynamic soaring,which harvests energy from the wind,can enhance Unmanned Aerial Vehicles'(UAVs')range and endurance.However,energy harvesting efficiency issues hinder UAV applications,which can be addressed by wing morphing.Therefore,this study investigates the influence of albatross wing morphing during dynamic soaring.By constructing a parametric model,the shape of the albatross wing can be modeled and achieve morphing based on joints.From the video data,this paper summarizes the typical wing morphing patterns of the albatross and notices that changes primarily occur during the leeward descent phase.This paper first analyzes the aerodynamic performance of different wing morphing patterns and finds that the drag coefficient can be reduced by 7.75%with a suitable morphing pattern.This paper also explores the drag coefficient reduction mechanism and finds that downwash airflow decreases by 30.32%after wingtip anhedral.Interestingly,the lift-to-drag ratio shows minimal variation under different morphing patterns,within 2%.From the stability perspective,this study finds that the neutral point position changes after morphing.The maximum longitudinal static margin change is 4.9%,enhancing longitudinal stability by increasing the restorative moment arm.The lateral neutral point is 4.87%closer to the center of gravity,decreasing the roll and yaw moments.It can be observed that wingtip anhedral significantly increases the stability of the albatross.Moreover,a flight simulation is carried out to study the morphing influence on trajectory and energy harvesting.The results show that maximum energy gained is improved by 47.99%,and endurance is increased by 13.05%.The results also indicate that the effects of wing morphing are global rather than limited to the phase of morphing occurrence.Finally,based on the results,this paper proposes wing morphing regularity about the wingtip for UAVs.Wingtip bends downward can significantly increase the UAVs'stability and reduce drag,but the overall trajectory needs to be reconsidered after introducing wing morphing.展开更多
Small and micro unmanned aircraft are the focus of scientific interest due to their wide range of applications.They often operate in a highly unstable flight environment where the application of new morphing wing tech...Small and micro unmanned aircraft are the focus of scientific interest due to their wide range of applications.They often operate in a highly unstable flight environment where the application of new morphing wing technologies offers the opportunity to improve flight characteristics.The investigated concept comprises port and starboard adjustable wings,and an adaptive elastoflexible membrane serves as the lifting surface.The focus is on the benefits of the deforming membrane during the impact of a one-minus-cosine type gust.At a low Reynolds number of Re=264000,the morphing wing model is investigated numerically by unsteady fluid-structure interaction simulations.First,the numerical results are validated by experimental data from force and moment,flow field,and deformation measurements.Second,with the rigid wing as the baseline,the flexible case is investigated,focusing on the advantages of the elastic membrane.For all configurations studied,the maximum amplitude of the lift coefficient under gust load shows good agreement between the experimental and numerical results.During the decay of the gust,they differ more the higher the aspect ratio of the wing.When considering the flow field,the main differences are due to the separation behavior on the upper side of the wing.The flow reattaches earlier in the experiments than in the simulations,which explains the higher lift values observed in the former.Only at one intermediate configuration does the lift amplitude of the rigid configuration exceeds that of the flexible by about 12%,with the elastic membrane resulting in a smaller and more uniform peak load,which is also evident in the wing loading and hence in the root bending moment.展开更多
A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morp...A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morphing aerospace vehicle with time-varying actuator faults.To accurately estimate the loss degree of actuator faults,an immersion and invariance observer based on the predefined time dynamic scale factor is designed to estimate and compensate it.A composite dynamic sliding mode surface is designed using a three-inflection-point hyperbolic function,and a novel three-inflection-point sliding mode control framework is proposed.The convergent domain of the sliding manifold is adjusted by parameters,and the system error convergence is controllable.A transfer function is designed to eliminate the sensitivity of the three-inflection-point hyperbolic sliding mode to the unknown initial state,and combined with the barrier Lyapunov function,and the performance constraint of the system is realized.The global asymptotic stability of the system is demonstrated using a strict mathematical proof.The effectiveness and superiority of the proposed control scheme are proven by simulation experiments.展开更多
This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of c...This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.展开更多
基金supported by the National Natural Science Foundation of China(No.92741205)。
文摘Fixed-wing long-endurance aircraft play an important role in many fields.However,to reduce drag,these aircraft often have an enormous aspect ratio and wingspan,leading to challenges such as high requirements for takeoff and landing sites and poor wind resistance.Morphing may be able to solve this problem,but conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high.First,this article develops a high-aspect-ratio aircraft with aerodynamic-driven morphing and validates the rationality and feasibility of this concept through flight tests.Then,focusing on the RQ-4‘‘Global Hawk”as the design baseline,the article explores multidisciplinary overall design methods for the aircraft,analyzing the comprehensive impact of morphing on aerodynamic,structural,and flight control design.Finally,the article elaborates on the benefits and costs associated with aerodynamic-driven morphing.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported by the National Natural Science Foundation of China(No.92741205).
文摘Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high,even exceeding the benefit of morphing.Especially for high aspect ratio aircraft with large root bending moments,it is very difficult for actuators to directly drive wing deformation.To address this issue,aerodynamic forces generated by control surface deflection can be utilized as an alternative to actuator-driven morphing.This approach reduces the overall cost of morphing while enhancing its benefits.This novel aerodynamic-driven morphing technique imposes new requirements and challenges on the aerodynamic design of aircraft.With a combination of flight experiments and numerical simulations,this article analyzes the variations in aerodynamic forces during the aerodynamic-driven process.Using a high aspect ratio longendurance UAV as the design baseline,the design method of the control surface for aerodynamic-driven morphing is also discussed.
基金Supported by the Bavarian Academic Forum(BayWISS),as a part of the joint academic partnership digitalization program.
文摘Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.
基金co-supported by the National Natural Science Foundation of China(No.12472332)。
文摘This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.
基金co-supported by the National Natural Science Foundation of China(No.52402460)project funded by the China Postdoctoral Science Foundation(No.2024T171113)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This paper aims to design a morphing wing with both Flexible Leading Edge(FLE)and Flexible Trailing Edge(FTE)by using cellular structures,which can help the wing boost the deformation to a greater extent on the premise that the weight is not changed,so as to play a greater role in aerodynamic control such as gust interference.First,as for structural design,based on NACA0012,a morphing wing model constructed by 3 forms of cell structures is proposed.Then,the aerodynamic characteristics under the interference of FLE and FTE are calculated by the Computational Fluid Dynamic(CFD)method.After the surrogate model is established to predict the lift coefficient of the wing effectively,the sensitivity analysis reveals that the main sensitivity index of FTE deflection angle β is 0.565,which has the greatest influence on the lift coefficient.And the total sensitivity index of FLE deflection angle γ is increased by 78.9%,which reveals a strong coupling relationship between FLE and FTE.Finally,using Finite Element Analysis(FEA)method and experiment,the deformation capability of the model under certain static loads are obtained.The results reveal that the maximum deflection angle of the morphing wing model can be±22°at FLE and±64°at FTE,indicating strong structural stiffness and resistance to bending breakage of the model.The presented results can be useful in the design of the cellular morphing wing with multiple flexible systems.
基金supported by the National Natural Science Foundation of China(No.52305262)the Aeronautical Science Foundation of China(No.20230015052002)the Fundamental Research Funds for the Central Universities(No.NT2024001)。
文摘Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent a key research aspect for morphing aircraft,since they can lead to potential improvements in flight range,maneuverability,load alleviation and airport compatibility.This paper proposes a hinge mechanism design for folding wingtips based on the shape memory alloy torsion tube,aiming to achieve successful folding using the actuation effect of the shape memory alloy.The proposed design employs a shape memory alloy torsion tube as the actuator for the active folding of the wingtip,which is motivated by the characteristics of the tube,enabling a simplified structure for the integration with high energy density.Through numerical simulation and testing of the folding wingtip structure,the concept is verified,which shows its potential as an actuator for folding wingtips.
基金co-supported by the National Natural Science Foundation of China(Nos.62203033,62273024,62073016)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ23F030020,LZ22F030012)+1 种基金the Defense Industrial Technology Development Program,China(No.JCKY2021601B016)the Equipment Pre-research Key Laboratory Foundation,China(No.JSY6142219202210)。
文摘Inspired by flight biology,morphing flight technology has great potential to improve the adaptability and maneuverability of aircraft.This paper is devoted to the flight control problem of morphing aircraft,and aimed at safe and fuel-saving flight through morphing actively.Specifically,the longitudinal dynamics of a morphing aircraft with telescopic wings is modelled as a strict-feedback nonlinear system.Through fitting the expression of aerodynamic parameters by the mor-phing ratio,the model uncertainties induced by morphing errors are embedded in the dynamics.To meet the safety and fuel-saving requirements,an Adaptive Coordinated Tracking Control Scheme(ACTCS)is then proposed,which consists of a morphing control module and a tracking control module.For the morphing control module,an on-line morphing decision model is given in an optimization process with respect to the morphing ratio,and a second-order tracking filter is introduced to smooth the decision output and ensure the physical realizability.For the tracking control module,the novel adaptive controllers for the velocity and altitude subsystems are proposed based on the dynamic surface control method,in which adaptive mechanisms are designed to com-pensate for the model uncertainties.Finally,the proposed ACTCS is simulated in nine different cases of the test flight mission,to verify its effectiveness,robustness and fuel-saving effect.
基金funded by Abu Dhabi Education Council Award for Research Excellence Program (AARE 2019) _(No. AARE19-213)by Khalifa University of Science and Technology through Faculty Start-up Award (No. FSU-2020-20)。
文摘This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.
基金co-supported by the National Key R&D Program of China(No.2022YFB3402200)the National Natural Science Foundation of China(Nos.12372123,12272305 and 12372156)+2 种基金the Key Project of NSFC,China(Nos.92271205,12032018 and 12220101002)the Fundamental Research Funds for the Central Universities of China(No.G2022KY0606)the Basic Research Program of China(No.JCKY2022603C016).
文摘This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.
基金supported by the National Natural Science Foundation of China (Nos. 52233014, U2241215)。
文摘This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
基金supported by the National Research Project“Variable CAmber wing TechNology(VCAN)”,China.
文摘Climate warming and the increased demand in air travels motivate the aviation industry to urgently produce technological innovations.One of the most promising innovations is based on the smoothly continuous morphing leading-edge concept.This study proposes a two-step process for the design of a morphing leading-edge,including the optimization of the outer variable-thickness composite compliant skin and the optimization of the inner kinematic mechanism.For the compliant skin design,an optimization of the variable thickness composite skin is proposed based on a laminate continuity model,with laminate continuity constraint and other manufacturing constraints.The laminate continuity model utilizes a guiding sequence and a ply-drop sequence to describe the overall stacking sequence of plies in different thickness regions of the complaint skin.For the inner kinematic mechanism design,a coupled four-bar linkage system is proposed and optimized to produce specific trajectories at the actuation points on the stringer hats of the compliant skin,which ensures that the compliant skin can be deflected into the aerodynamically optimal profile.Finally,a morphing leading-edge is manufactured and tested.Experimental results are compared with numerical predictions,confirming the feasibility of the morphing leading-edge concept and the overall proposed design approach.
基金supported by the National Natural Science Foundation of China(Nos.52192633,11872293)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)。
文摘The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.
基金the Hydra Technologies team in Mexicothe CREATEUTILI Program for their financial support。
文摘The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.
基金co-supported by the National Natural Science Foundation of China(No.11672018)the Fundamental Research Funds for the Central Universities,China(No.YWF-23-SDHK-L-002).
文摘This paper focuses on the effect of the phase offset of Leading-Edge(LE)morphing on the aerodynamic characteristics of a pitching NACA0012 airfoil.Assuming an unstretched camber and using polynomial interpolation,an explicit expression for LE nonlinear morphing is proposed and implemented for the large pitching motion of the airfoil.Flow field results and aerodynamic forces are obtained by solving the unsteady Reynolds-averaged Navier-Stokes equations for both the airfoil’s pitching motion and LE morphing.Furthermore,the index of instantaneous aerodynamic power is used to quantify the work done by the airflow in a dynamic process.According to the instantaneous aerodynamic power and energy map,which denotes the energy transfer between the airfoil’s oscillation and flow field,the airfoil is subject to stall flutter.The results show that LE morphing with an optimal phase offset of 315°reduces the energy extraction from the flow field,suppressing the stall flutter instability.This optimal phase offset is effective at different pitching axis positions of the airfoil.The results signify that LE morphing can suppress stall flutter by advancing the occurrence of the first LE vortex and increasing the nose-down moment during the upstroke period.
基金sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2024037)。
文摘Dynamic soaring,which harvests energy from the wind,can enhance Unmanned Aerial Vehicles'(UAVs')range and endurance.However,energy harvesting efficiency issues hinder UAV applications,which can be addressed by wing morphing.Therefore,this study investigates the influence of albatross wing morphing during dynamic soaring.By constructing a parametric model,the shape of the albatross wing can be modeled and achieve morphing based on joints.From the video data,this paper summarizes the typical wing morphing patterns of the albatross and notices that changes primarily occur during the leeward descent phase.This paper first analyzes the aerodynamic performance of different wing morphing patterns and finds that the drag coefficient can be reduced by 7.75%with a suitable morphing pattern.This paper also explores the drag coefficient reduction mechanism and finds that downwash airflow decreases by 30.32%after wingtip anhedral.Interestingly,the lift-to-drag ratio shows minimal variation under different morphing patterns,within 2%.From the stability perspective,this study finds that the neutral point position changes after morphing.The maximum longitudinal static margin change is 4.9%,enhancing longitudinal stability by increasing the restorative moment arm.The lateral neutral point is 4.87%closer to the center of gravity,decreasing the roll and yaw moments.It can be observed that wingtip anhedral significantly increases the stability of the albatross.Moreover,a flight simulation is carried out to study the morphing influence on trajectory and energy harvesting.The results show that maximum energy gained is improved by 47.99%,and endurance is increased by 13.05%.The results also indicate that the effects of wing morphing are global rather than limited to the phase of morphing occurrence.Finally,based on the results,this paper proposes wing morphing regularity about the wingtip for UAVs.Wingtip bends downward can significantly increase the UAVs'stability and reduce drag,but the overall trajectory needs to be reconsidered after introducing wing morphing.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)(No.BR 1511/12-1)。
文摘Small and micro unmanned aircraft are the focus of scientific interest due to their wide range of applications.They often operate in a highly unstable flight environment where the application of new morphing wing technologies offers the opportunity to improve flight characteristics.The investigated concept comprises port and starboard adjustable wings,and an adaptive elastoflexible membrane serves as the lifting surface.The focus is on the benefits of the deforming membrane during the impact of a one-minus-cosine type gust.At a low Reynolds number of Re=264000,the morphing wing model is investigated numerically by unsteady fluid-structure interaction simulations.First,the numerical results are validated by experimental data from force and moment,flow field,and deformation measurements.Second,with the rigid wing as the baseline,the flexible case is investigated,focusing on the advantages of the elastic membrane.For all configurations studied,the maximum amplitude of the lift coefficient under gust load shows good agreement between the experimental and numerical results.During the decay of the gust,they differ more the higher the aspect ratio of the wing.When considering the flow field,the main differences are due to the separation behavior on the upper side of the wing.The flow reattaches earlier in the experiments than in the simulations,which explains the higher lift values observed in the former.Only at one intermediate configuration does the lift amplitude of the rigid configuration exceeds that of the flexible by about 12%,with the elastic membrane resulting in a smaller and more uniform peak load,which is also evident in the wing loading and hence in the root bending moment.
基金co-supported by the Xinjiang Uygur Autonomous Region Natural Science Foundation,China(No.2022D01C86)the National Natural Science Foundation of China(No.62263030)the Open Research Fund Program of Beijing National Research Center for Information Science and Technology,China(No.BR2023KF02011).
文摘A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morphing aerospace vehicle with time-varying actuator faults.To accurately estimate the loss degree of actuator faults,an immersion and invariance observer based on the predefined time dynamic scale factor is designed to estimate and compensate it.A composite dynamic sliding mode surface is designed using a three-inflection-point hyperbolic function,and a novel three-inflection-point sliding mode control framework is proposed.The convergent domain of the sliding manifold is adjusted by parameters,and the system error convergence is controllable.A transfer function is designed to eliminate the sensitivity of the three-inflection-point hyperbolic sliding mode to the unknown initial state,and combined with the barrier Lyapunov function,and the performance constraint of the system is realized.The global asymptotic stability of the system is demonstrated using a strict mathematical proof.The effectiveness and superiority of the proposed control scheme are proven by simulation experiments.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075026 and 52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-22-L-1119)。
文摘This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.