Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing wi...Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing with lithium metal,hindering practical applications.Herein,we introduce a flexible metal-organic framework(MOF:NUS-6)-incorporated polymeric layer,denoted as NP,designed to protect the sodium superionic conductor(NASICON)-type Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)electrolyte from Li metal anodes.The NP matrix establishes a soft interface with the LATP surface,effectively reducing voids and gaps that may arise between the LATP electrolyte and Li metal.Moreover,the MOF component in NP enhances ionic conductivity,offers abundant Li^(+)transport sites,and provides hierarchical ion channels,ensuring a homogeneous Li^(+)flow and thus effectively inhibiting Li dendrite formation.Utilizing NP,we fabricate Li symmetrical cells cycled for over 1600 h at 0.2 mA cm^(-2)and all-solid-state LiINP-LATPI LiFePO_(4)batteries,achieving a remarkable 99.3%capacity retention after 200 cycles at 0.2 C.This work outlines a general strategy for designing long-lasting and stable solid-state Li metal batteries.展开更多
Photocatalytic carbon dioxide(CO_(2))reduction offers an alternative strategy for converting CO_(2)into high-value added gaseous fuels,thereby paving the way for the development of clean and renewable energy.Metal-org...Photocatalytic carbon dioxide(CO_(2))reduction offers an alternative strategy for converting CO_(2)into high-value added gaseous fuels,thereby paving the way for the development of clean and renewable energy.Metal-organic frameworks(MOFs),characterized by their highly porous structure,exceptional CO_(2)adsorption capacity,and tunable architecture,have emerged as promising candidates for photocatalytic CO_(2)reduction.This review systematically examines the recent advancement in MOFs-based photocatalysts for CO_(2)reduction to CO.It begins with the overview of the fundamental mechanisms and processes of MOFs towards photocatalytic CO_(2)reduction.Subsequently,common strategies for the modulation of MOFs-based photocatalysts are summarized,including metallic site modification,functionalized ligand incorporation,morphological control,defect engineering,and heterostructure construction.Notably,the review analyzes the critical factors contributing to the high selectivity of CO_(2)photoreduction to CO from both thermodynamic and kinetic perspectives.The conclusion addresses current challenges and future perspectives in designing highly efficient photocatalysts with abundant active sites,providing valuable insights for their continued development.展开更多
Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell...Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworksbased ligand exchange strategy followed by a carbonization treatment with melamine.Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod(Mo2N@CoFe@C/CNT),constructing a special multi-dimension hierarchical MA material.Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite,which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell.Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of−53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz.The Mo2N@CoFe@C/CNT composites hold the following advantages:(1)hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization,(2)unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss,(3)highly dispersed magnetic CoFe nanoparticles within“tubes on rods”matrix build multi-scale magnetic coupling network and reinforce magnetic response capability,confirmed by the off-axis electron holography.展开更多
基金supported by the National Key R&D Program of China(2022YFB2404700)the Natural Science Foundation of China(22109186)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2021ZT09L227)supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22hytd01)。
文摘Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing with lithium metal,hindering practical applications.Herein,we introduce a flexible metal-organic framework(MOF:NUS-6)-incorporated polymeric layer,denoted as NP,designed to protect the sodium superionic conductor(NASICON)-type Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)electrolyte from Li metal anodes.The NP matrix establishes a soft interface with the LATP surface,effectively reducing voids and gaps that may arise between the LATP electrolyte and Li metal.Moreover,the MOF component in NP enhances ionic conductivity,offers abundant Li^(+)transport sites,and provides hierarchical ion channels,ensuring a homogeneous Li^(+)flow and thus effectively inhibiting Li dendrite formation.Utilizing NP,we fabricate Li symmetrical cells cycled for over 1600 h at 0.2 mA cm^(-2)and all-solid-state LiINP-LATPI LiFePO_(4)batteries,achieving a remarkable 99.3%capacity retention after 200 cycles at 0.2 C.This work outlines a general strategy for designing long-lasting and stable solid-state Li metal batteries.
基金supported by the National Key Research and Development Program of China(No.2021YFC2901100)the National Natural Science Foundation of China(No.22478425).
文摘Photocatalytic carbon dioxide(CO_(2))reduction offers an alternative strategy for converting CO_(2)into high-value added gaseous fuels,thereby paving the way for the development of clean and renewable energy.Metal-organic frameworks(MOFs),characterized by their highly porous structure,exceptional CO_(2)adsorption capacity,and tunable architecture,have emerged as promising candidates for photocatalytic CO_(2)reduction.This review systematically examines the recent advancement in MOFs-based photocatalysts for CO_(2)reduction to CO.It begins with the overview of the fundamental mechanisms and processes of MOFs towards photocatalytic CO_(2)reduction.Subsequently,common strategies for the modulation of MOFs-based photocatalysts are summarized,including metallic site modification,functionalized ligand incorporation,morphological control,defect engineering,and heterostructure construction.Notably,the review analyzes the critical factors contributing to the high selectivity of CO_(2)photoreduction to CO from both thermodynamic and kinetic perspectives.The conclusion addresses current challenges and future perspectives in designing highly efficient photocatalysts with abundant active sites,providing valuable insights for their continued development.
基金This work was supported by the Ministry of Science and Technology of China(973 Project No.2018YFA0209102)the National Natural Science Foundation of China(11727807,51725101,51672050,61790581).
文摘Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption(MA)field.Herein,a three-dimension hierarchical“nanotubes on microrods,”core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworksbased ligand exchange strategy followed by a carbonization treatment with melamine.Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod(Mo2N@CoFe@C/CNT),constructing a special multi-dimension hierarchical MA material.Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite,which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell.Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of−53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz.The Mo2N@CoFe@C/CNT composites hold the following advantages:(1)hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization,(2)unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss,(3)highly dispersed magnetic CoFe nanoparticles within“tubes on rods”matrix build multi-scale magnetic coupling network and reinforce magnetic response capability,confirmed by the off-axis electron holography.