β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radi...β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radiation resistance,and excellent chemical and thermal stabilities.Here,a self-powered photodetector(PD)based on an Ag/β-Ga_(2)O_(3) Schottky heterojunction was designed and fabricated.Through a subtle design of electrodes,the pyro-phototronic effect was discovered,which can be coupled to the common photovoltaic effect and further enhance the performance of the PD.Compared to traditional Ga_(2)O_(3)-based PD,the as-used PD exhibited a self-driving property and a broadband response beyond the bandgap lim-itations,ranging from 200 nm(deep UV)to 980 nm(infrared).Moreover,the photoresponse time was greatly shrunk owing to the coupling effect.Under laser irradiation,with a wavelength of 450 nm and a power density of 8 mW cm-2,the photocurrent could be improved by around 41 times compared with the sole photovoltaic effect.Besides,the performances of the Schottky PD were enhanced at both high and low temperatures.The device also possessed long-term working stability.This paper not only re-veals basic physics lying in the 4th generation semiconductor Ga_(2)O_(3) but also sheds light on the multi-encryption transmission of light information using this PD.展开更多
Objective To investigate whether 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside(TSG)ameliorated polycystic ovary syndrome(PCOS)-like characteristics by inhibiting inflammation.Methods PCOS models were established ...Objective To investigate whether 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside(TSG)ameliorated polycystic ovary syndrome(PCOS)-like characteristics by inhibiting inflammation.Methods PCOS models were established by injecting subcutaneously with dehydroepiandrosterone into female Sprague-Dawley rats,followed by receiving intraperitoneal injection of TSG.The granular cells(GCs)KGN were transfected with small interfering RNAs(si-NC and si-CYP19A1).The cells were preincubated with lipopolysaccharide(LPS)and then treated with or without TSG.The estrous cycle was monitored using vaginal exfoliated cells.The morphology of ovarian follicles was analyzed by H&E staining.ELISA was used to analyze estradiol(E2),testosterone(T),follicle stimulating hormone(FSH),luteinizing hormone(LH),IL-6,TNF-α,AGEs,CRP and Omentin-1 levels in serum.Immunohistochemistry was performed to analyze PCNA and CYP19A1 expressions in the GCs of ovaries.Tunel staining was executed to detect the apoptosis of GCs.Quantitative polymerase chain reaction(qPCR)and Western blot were implemented to measure the expression of CYP19A1 in the ovaries and transfected cells.qPCR was used to analyze the expression of IL-6 and TNF-αin the transfected cells treated with LPS and TSG.Results The estrous cycles were restored in TSG group.Compared with model group,the sinus follicles were reduced and corpus luteums were increased in TSG group.TSG group showed increased E2,and decreased T and LH,compared with model group.Pro-inflammatory factors(IL-6,TNF-α,CRP and AGEs)were decreased,and anti-inflammatory factor(Omentin-1)was increased in TSG group compared with those in model group.TSG could partially inhibit decrease of PNCA-positive GCs and increase of Tunel-positive GCs caused by PCOS.The CYP19A1 expression of GCs in TSG group was upregulated compared with model group.The expressions of IL-6 and TNFαin si-CYP19A1 cells were increased compared with si-NC cells.Compared with cells(si-NC and si-CYP19A1)treated without LPS,the expressions of IL-6 and TNF-αcells were increased,and the expression of CYP19A1 was downregulated in LPS-preincubated cells.Compared with cells treated with LPS,the expression of IL-6 and TNF-αwere decreased,and the expression of CYP19A1 was increased in cells treated with LPS and TSG.Compared with si-NC cells treated with LPS and TSG,the expressions of IL-6 and TNF-αcells were increased in the si-CYP19A1 cells treated with LPS and TSG.Conclusion TSG could alleviate PCOS-like characteristics by increasing the expression of CYP19A1 in GCs to inhibit inflammatory response.展开更多
In yeast,the stress-responsive protein Whi2 interacts with phosphatase Psr1 to form a complex that regulates cell growth,reproduction,infection,and the stress response.However,the roles of Whi2 and Psr1 in Fusarium gr...In yeast,the stress-responsive protein Whi2 interacts with phosphatase Psr1 to form a complex that regulates cell growth,reproduction,infection,and the stress response.However,the roles of Whi2 and Psr1 in Fusarium graminearum remain unclear.In this study,we identified homologous genes of WHI2 and PSR1 in F.graminearum and evaluated their functions by constructing deletion mutants.By comparing the responses of the mutants to different stressors,we found that FgWHI2 and FgPSR1 were involved in responding to osmotic,cell wall and cell membrane stresses,while also affecting the sexual and asexual reproduction in F.graminearum.Our studies demonstrated that FgWHI2 and FgPSR1 regulate the biosynthesis of ergosterol and the transcriptional level of FgCYP51C,which is a CYP51 paralogues unique to Fusarium species.This study also found that the deoxynivalenol(DON)production of FgWHI2 and FgPSR1 deletion mutants was reduced by≥90%and DON production was positively correlated with the transcriptional levels of FgWHI2 and FgPSR1.In addition,we observed that FgWHI2 and FgPSR1 were involved in regulating the sensitivity of F.graminearum to chlorothalonil,fluazinam,azoxystrobin,phenamacril,and oligomycin.This study revealed cross-resistance between chlorothalonil and fluazinam.Meanwhile,chlorothalonil and fluazinam inhibited DON biosynthesis by altering the normal expression of FgWhi2 and FgPsr1.Interestingly,the subcellular localization of FgWhi2 and FgPsr1 was significantly altered after treatment with chlorothalonil and fluazinam,with increased co-localization.Collectively,these findings indicate that FgWHI2 and FgPSR1 play crucial roles in stress response mechanisms,reproductive processes,secondary metabolite synthesis,and fungicide sensitivity in F.graminearum.展开更多
BACKGROUND Dental implants are widely used to replace missing teeth.Currently,clinicians assess osseointegration success by measuring the implant’s stability within the bone and monitoring the marginal tissue height....BACKGROUND Dental implants are widely used to replace missing teeth.Currently,clinicians assess osseointegration success by measuring the implant’s stability within the bone and monitoring the marginal tissue height.Diabetes,especially type 2 diabetes mellitus(T2DM),has been reported to impair implant healing,drastically reducing implant success rates.AIM To analyze the high-risk factors for inflammatory response and prognosis after dental implantation in patients with T2DM,and provide strong evidence for reducing the incidence of postimplant peri-implantitis(PI).METHODS We performed a retrospective review of 146 patients with T2DM who had dental implants placed at Tianjin Fifth Central Hospital,between September 2021 and September 2023,which was regarded as the observation group.Moreover,60 ageand gender-matched individuals with normal blood glucose levels served as the control group.The general information,postoperative periodontal indices,and levels of inflammatory factors were comprehensively analyzed and compared.Furthermore,the incidence of postimplant PI was counted,and multivariate logistic regression was used to identify the determinants of postimplant PI.RESULTS In terms of the periodontal indices,the probing depth,modified sulcus bleeding index,and marginal bone loss in the observation cohorts began to increase significantly at 6 months and 3 months,respectively,after the completion of dental implant restoration.The T2DM cases demonstrated significantly elevated counts of leukocytes,lymphocytes,and neutrophils compared to the controls at 24 hours postoperatively.Moreover,the TNF-α,IL-1β,and IL-6 concentrations started to increase significantly in the gingival crevicular fluid 3 months after the completion of dental implant restoration in both cohorts,with the observation group exhibiting higher levels than the controls at each time point.63 out of the 146 cases developed PI.Multivariate logistic regression analysis indicated that high glycosylated hemoglobin levels,smoking,daily tooth-brushing frequency of less than once,and the anterior tooth as the implant site independently contributed to postimplant PI in T2DM cases,while a tooth-brushing duration of≥3 minutes was a protective factor.CONCLUSION Patients with T2DM are at risk of developing PI following dental implantation.Clinically,it is necessary to enhance the identification of risk factors for postimplant PI,improve risk prediction,prevention,and control,and formulate targeted intervention countermeasures to reduce the occurrence of postimplant PI.展开更多
To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synt...To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.展开更多
Aim: To characterize the matrix metalloproteinases (MMP)-2 promoter and to identify androgen response elements (AREs) involved in androgen-induced MMP-2 expression. Methods: MMP-2 mRNA levels was determined by r...Aim: To characterize the matrix metalloproteinases (MMP)-2 promoter and to identify androgen response elements (AREs) involved in androgen-induced MMP-2 expression. Methods: MMP-2 mRNA levels was determined by reverse transcription-polymerase chain reaction (RT-PCR). MMP-2 promoter-driven luciferase assays were used to determine the fragments responsible for androgen-induced activity. Chromatin-immunoprecipitation assay and electrophoretic mobility shift assays (EMSA) were used to verify the identified AREs in the MMP-2 promoter. Results: Androgen significantly induced MMP-2 expression at the mRNA level, which was blocked by the androgen antagonist bicalutamide. Deletion of a region encompassing base pairs -1591 to -1259 (relative to the start codon) of the MMP-2 promoter led to a significant loss of androgen-induced reporter activity. Additional deletion of the 5'-region up to -562 bp further reduced the androgen-induced MMP-2 promoter activity. Sequence analysis of these two regions revealed two putative ARE motifs. Introducing mutations in the putative ARE motifs by site-directed mutagenesis approach resulted in a dramatic loss of androgen-induced MMP-2 promoter activity, indicating that the putative ARE motifs are required for androgen-stimulated MMP-2 expression. Most importantly, the androgen receptor (AR) interacted with both motif-containing promoter regions in vivo in a chromatin immunoprecipitation assay after androgen treatment. Furthermore, the AR specifically bound to the wild-type but not mutated ARE motifs-containing probes in an in vitro EMSA assay. Conclusion: Two ARE motifs were identified to be responsible for androgen-induced MMP-2 expression in prostate cancer cells.展开更多
Bi_(2)YbO_(4)Cl with a fluorite layer structure belongs to the family of the bismuth rare-earth oxyhalides Bi_(2)REO_(4)X(X=Cl,B r,I).However,the synthesis and photoelectric properties of Bi_(2)YbO_(4)Cl have almost n...Bi_(2)YbO_(4)Cl with a fluorite layer structure belongs to the family of the bismuth rare-earth oxyhalides Bi_(2)REO_(4)X(X=Cl,B r,I).However,the synthesis and photoelectric properties of Bi_(2)YbO_(4)Cl have almost not been reported.In this work,Bi_(2)YbO_(4)Cl was synthesized using the solid-state method and the solvothermal method.Yb3+ions show a strong characteristic absorption peak at 980 nm,which was measured by ultraviolet-visible-near-infrared absorption spectra.The transient photoconductivity of Bi_(2)YbO_(4)Cl was obtained by time-resolved terahertz spectroscopy system under 400 and 800 nm laser excitations,respectively.The frequency-dependent transient photoconductivity analysis reveals the Drude-Smith behavior in Bi_(2)YbO_(4)Cl.Under photoexcitation,the hot charge carriers with a long relaxation lifetime and a carrier mobility of 48 cm^(2)/(V·s) are obtained.The synthesis of Bi_(2)YbO_(4)Cl is of great significance for the development of novel photocatalytic and photo harvesting materials with broad spectral response.展开更多
Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadlea...Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.展开更多
Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadlea...Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.展开更多
[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theo...[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theoretical basis for improving the pruning techniques of Korla fragrant pear trees. [Method] The light response curve and CO2 response curve of the trees trained to three systems were measured by LI-6400 portable photosynthesis system. The SPAD value was measured using SPAD-502 chlorophyll meter, and specific leaf weight was calculated, to evaluate the effects of the three training systems. [Result] The CO2 response curves of the three training systems were basically in agreement with their light response curves, but there were some differences in their characteristic parameters. Among the three training systems, the maximum net photosynthetic rate, apparent quantum yield and light compensation point of espalier trained trees were the highest, while their light saturation point was the lowest. The CO2 saturation point of delayed-open central leader trained trees and open center trained trees were 1 752 and 1 665 μmol/mol, both of which were much higher than that of espalier trained trees. In addition, the carboxylation efficiency and photorespiration rate of espalier trained trees were both higher than those of delayed-open central leader trained trees and open center trained trees, while the CO2 compensation point of espalier trained trees was the lowest. The leaf SPAD value of espalier trained trees was the largest, followed by that of open center trained trees, and the leaf SPAD value of delayed-open central leader trained trees was the smallest. In addition, the leaf area and specific leaf weight of espalier trained trees were both the highest, followed by those of open center trained trees. [Conclusion] Among the training systems for Korla fragrant pear trees, the espalier training system had better ability to capture light, higher photosynthetic productivity and strongest adaptability to light environment, and open center training system takes the second place. On the contrary, delayed-open central leader training system has the weakest adaptability to light environment, but it can adapt to a higher CO2 concentration. In summary, for the training of Korla fragrant pear trees, espalier training system, which has the highest theoretical yield, is the best among the three training systems, and delayed-open central leader training system is the worst.展开更多
The relationship between Ca 2+ and ethylene response was investigated through analyzing the effect of Ca 2+ on the response to ethylene in etiolated tomato (Lycopersicon esculentum Mill cv. Lichun) seedling grow...The relationship between Ca 2+ and ethylene response was investigated through analyzing the effect of Ca 2+ on the response to ethylene in etiolated tomato (Lycopersicon esculentum Mill cv. Lichun) seedling grown in darkness. When the etiolated tomato seedlings were treated with different concentrations of Ca 2+, the 'triple response' phenotype, ethylene production, the expression of ethylene receptor gene NEVER-RIPE (NR) and the content of cytosolic CaM were determined. With the concentration of Ca 2+ in the culture medium increasing from 0 mmol/L to 3.8 mmol/L, the 'triple response' phenotype of etiolated tomato seedling was correspondingly strengthened; meanwhile the ethylene production, the amount of NR gene expression and the concentration of CaM increased respectively. However, when the concentration of Ca 2+ was increased from 3.8 mmol/L to 10 mmol/L, the phenotype of 'triple response', ethylene production, NR gene expression, and the CaM content didn't increase further, but decreased consequently. The results indicated that the effect of Ca 2+ on the ethylene triple response in etiolated tomato seedling was relevant to ethylene biosynthesis and ethylene receptor gene expression which were influenced by applied Ca 2+, and these effects might be mediated through the change of CaM concentration in plant cell.展开更多
The experimental design methodology was applied for modeling and optimizing the operation parameters on photocatalytic degradation of chloramphenicol (CAP) using TiO 2 as photocatalyst in a photoreactor. Three exper...The experimental design methodology was applied for modeling and optimizing the operation parameters on photocatalytic degradation of chloramphenicol (CAP) using TiO 2 as photocatalyst in a photoreactor. Three experimental parameters (including pH, TiO 2 concentration and CAP initial concentration) were adopted to obtain the preliminary information. The multivariate experimental design was employed to establish a quadratic model as a functional relationship between the degradation rate of CAP and three experimental parameters. The interaction effects and optimal parameters were obtained by using Design Expert software. The optimal values of the operation parameters under the related constraint conditions were found at pH 6.4, TiO 2 concentration of 0.94 g/L and CAP initial concentration of 19.97 mg/L, respectively. The degradation rate of CAP approached 85.97% under optimal conditions. The regression analysis with R 2 value of 0.9519 had a good agreement between the experimental results and the predictive values. In addition, pH and TiO 2 concentration had a significant influence on the degradation rate of CAP.展开更多
Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic a...Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.展开更多
Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therape...Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therapeutic synergy between radiotherapy and androgen ablation treatment provides a promising strategy for improving the clinical outcome. Accordingly, the androgen deprivation-induced signaling pathway may also mediate radiosensitivity in PCa cells. The C4-2 cell line was derived from the androgen-sensitive LNCaP parent line under androgen-depleted condition and had acquired androgen-refractory characteristics. In our study, the response to radiation was evaluated in both LNCaP and C4-2. Results showed that C4-2 cells were more likely to survive from irradiation and appeared more aggressive in their resistance to radiation treatment compared with LNCaP, as measured by clonogenic assays and cell viability and cell cycle analyses. Gene expression analyses revealed that a set of genes involved in cell cycle arrest and DNA repair were differentially regulated in LNCaP and C4-2 in response to radiation, which was also consistent with the radiation-resistant property observed in C4-2 cells. These results strongly suggested that the radiation-resistant property may develop with progression of PCa to androgen- independent status. Not only can the LNCaP and C4-2 PCa progression model be applied for investigating androgen-refractory progression, but it can also be used to explore the development of radiation resistance in PCa.展开更多
AIM: To examine whether vitamin D improved viral response and predicted treatment outcome in patients with hepatitis C virus (HCV) genotype 2-3. METHODS: Fifty patients with chronic HCV genotype 2-3 were randomized co...AIM: To examine whether vitamin D improved viral response and predicted treatment outcome in patients with hepatitis C virus (HCV) genotype 2-3. METHODS: Fifty patients with chronic HCV genotype 2-3 were randomized consecutively into two groups: Treatment group [20 subjects, age 48 ± 14 years, body mass index (BMI) 30 ± 6, 65% male], who received 180 μg pegylated α-interferon-2a plus oral ribavirin 800 mg/d (Peg/RBV), together with oral vitamin D3 (Vitamidyne D drops; 2000 IU/d, 10 drops/d, normal serum level > 32 ng/mL) for 24 wk; and control group (30 subjects, age 45 ± 10 years, BMI 26 ± 3, 60% male), who received identical therapy without vitamin D. HCV RNA was assessed by reverse transcription polymerase chain reaction. Undetectable HCV RNA at 4, 12 and 24 wk after treatment was considered as rapid virological response, complete early virological response, and sustained virological response (SVR), respectively. Biomarkers of in? ammation were measured. RESULTS: The treatment group with vitamin D hadhigher BMI (30 ± 6 vs 26 ± 3, P < 0.02), and high viral load (> 400 000 IU/mL, 65% vs 40%, P < 0.01) than controls. Ninety-fi ve percent of treated patients were HCV RNA negative at week 4 and 12. At 24 wk after treatment (SVR), 19/20 (95%) treated patients and 23/30 (77%) controls were HCV RNA negative (P < 0.001). Baseline serum vitamin D levels were lower at baseline (20 ± 8 ng/mL) and increased after 12 wk vitamin D treatment, to a mean level of (34 ± 11 ng/ mL). Logistic regression analysis identifi ed vitamin D supplement [odds ratio (OR) 3.0, 95% CI 2.0-4.9, P < 0.001], serum vitamin D levels (< 15 or > 15 ng/mL, OR 2.2, P < 0.01), and BMI (< 30 or > 30, OR 2.6, P < 0.01) as independent predictors of viral response. Adverse events were mild and typical of Peg/RBV. CONCLUSION: Low vitamin D levels predicts negative treatment outcome, and adding vitamin D to conventional Peg/RBV therapy for patients with HCV genotype 2-3 signifi cantly improves viral response.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52192610 and 52192613)the National Key R&D Project from the Minister of Science and Technology(No.2021YFA1201601)the CAS-TWAS President’s Fellow-ship(A.B).
文摘β-Ga_(2)O_(3),as one of the important 4th generation semiconductors,is widely used in solar-blind ultraviolet(UV)detectors with a short detection range of 200-280 nm benefiting from its ultra-wide bandgap,strong radiation resistance,and excellent chemical and thermal stabilities.Here,a self-powered photodetector(PD)based on an Ag/β-Ga_(2)O_(3) Schottky heterojunction was designed and fabricated.Through a subtle design of electrodes,the pyro-phototronic effect was discovered,which can be coupled to the common photovoltaic effect and further enhance the performance of the PD.Compared to traditional Ga_(2)O_(3)-based PD,the as-used PD exhibited a self-driving property and a broadband response beyond the bandgap lim-itations,ranging from 200 nm(deep UV)to 980 nm(infrared).Moreover,the photoresponse time was greatly shrunk owing to the coupling effect.Under laser irradiation,with a wavelength of 450 nm and a power density of 8 mW cm-2,the photocurrent could be improved by around 41 times compared with the sole photovoltaic effect.Besides,the performances of the Schottky PD were enhanced at both high and low temperatures.The device also possessed long-term working stability.This paper not only re-veals basic physics lying in the 4th generation semiconductor Ga_(2)O_(3) but also sheds light on the multi-encryption transmission of light information using this PD.
文摘Objective To investigate whether 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside(TSG)ameliorated polycystic ovary syndrome(PCOS)-like characteristics by inhibiting inflammation.Methods PCOS models were established by injecting subcutaneously with dehydroepiandrosterone into female Sprague-Dawley rats,followed by receiving intraperitoneal injection of TSG.The granular cells(GCs)KGN were transfected with small interfering RNAs(si-NC and si-CYP19A1).The cells were preincubated with lipopolysaccharide(LPS)and then treated with or without TSG.The estrous cycle was monitored using vaginal exfoliated cells.The morphology of ovarian follicles was analyzed by H&E staining.ELISA was used to analyze estradiol(E2),testosterone(T),follicle stimulating hormone(FSH),luteinizing hormone(LH),IL-6,TNF-α,AGEs,CRP and Omentin-1 levels in serum.Immunohistochemistry was performed to analyze PCNA and CYP19A1 expressions in the GCs of ovaries.Tunel staining was executed to detect the apoptosis of GCs.Quantitative polymerase chain reaction(qPCR)and Western blot were implemented to measure the expression of CYP19A1 in the ovaries and transfected cells.qPCR was used to analyze the expression of IL-6 and TNF-αin the transfected cells treated with LPS and TSG.Results The estrous cycles were restored in TSG group.Compared with model group,the sinus follicles were reduced and corpus luteums were increased in TSG group.TSG group showed increased E2,and decreased T and LH,compared with model group.Pro-inflammatory factors(IL-6,TNF-α,CRP and AGEs)were decreased,and anti-inflammatory factor(Omentin-1)was increased in TSG group compared with those in model group.TSG could partially inhibit decrease of PNCA-positive GCs and increase of Tunel-positive GCs caused by PCOS.The CYP19A1 expression of GCs in TSG group was upregulated compared with model group.The expressions of IL-6 and TNFαin si-CYP19A1 cells were increased compared with si-NC cells.Compared with cells(si-NC and si-CYP19A1)treated without LPS,the expressions of IL-6 and TNF-αcells were increased,and the expression of CYP19A1 was downregulated in LPS-preincubated cells.Compared with cells treated with LPS,the expression of IL-6 and TNF-αwere decreased,and the expression of CYP19A1 was increased in cells treated with LPS and TSG.Compared with si-NC cells treated with LPS and TSG,the expressions of IL-6 and TNF-αcells were increased in the si-CYP19A1 cells treated with LPS and TSG.Conclusion TSG could alleviate PCOS-like characteristics by increasing the expression of CYP19A1 in GCs to inhibit inflammatory response.
基金supported by the National Key Research and Development Program of China(2022YFD1400100)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(21)2037)+1 种基金the Guidance Foundation of the Hainan Institute of Nanjing Agricultural University,China(NAUSY-MS03)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX20_0596)。
文摘In yeast,the stress-responsive protein Whi2 interacts with phosphatase Psr1 to form a complex that regulates cell growth,reproduction,infection,and the stress response.However,the roles of Whi2 and Psr1 in Fusarium graminearum remain unclear.In this study,we identified homologous genes of WHI2 and PSR1 in F.graminearum and evaluated their functions by constructing deletion mutants.By comparing the responses of the mutants to different stressors,we found that FgWHI2 and FgPSR1 were involved in responding to osmotic,cell wall and cell membrane stresses,while also affecting the sexual and asexual reproduction in F.graminearum.Our studies demonstrated that FgWHI2 and FgPSR1 regulate the biosynthesis of ergosterol and the transcriptional level of FgCYP51C,which is a CYP51 paralogues unique to Fusarium species.This study also found that the deoxynivalenol(DON)production of FgWHI2 and FgPSR1 deletion mutants was reduced by≥90%and DON production was positively correlated with the transcriptional levels of FgWHI2 and FgPSR1.In addition,we observed that FgWHI2 and FgPSR1 were involved in regulating the sensitivity of F.graminearum to chlorothalonil,fluazinam,azoxystrobin,phenamacril,and oligomycin.This study revealed cross-resistance between chlorothalonil and fluazinam.Meanwhile,chlorothalonil and fluazinam inhibited DON biosynthesis by altering the normal expression of FgWhi2 and FgPsr1.Interestingly,the subcellular localization of FgWhi2 and FgPsr1 was significantly altered after treatment with chlorothalonil and fluazinam,with increased co-localization.Collectively,these findings indicate that FgWHI2 and FgPSR1 play crucial roles in stress response mechanisms,reproductive processes,secondary metabolite synthesis,and fungicide sensitivity in F.graminearum.
基金Supported by Tianjin Municipality Health Science and Technology Project,No.TJWJ2023MS052.
文摘BACKGROUND Dental implants are widely used to replace missing teeth.Currently,clinicians assess osseointegration success by measuring the implant’s stability within the bone and monitoring the marginal tissue height.Diabetes,especially type 2 diabetes mellitus(T2DM),has been reported to impair implant healing,drastically reducing implant success rates.AIM To analyze the high-risk factors for inflammatory response and prognosis after dental implantation in patients with T2DM,and provide strong evidence for reducing the incidence of postimplant peri-implantitis(PI).METHODS We performed a retrospective review of 146 patients with T2DM who had dental implants placed at Tianjin Fifth Central Hospital,between September 2021 and September 2023,which was regarded as the observation group.Moreover,60 ageand gender-matched individuals with normal blood glucose levels served as the control group.The general information,postoperative periodontal indices,and levels of inflammatory factors were comprehensively analyzed and compared.Furthermore,the incidence of postimplant PI was counted,and multivariate logistic regression was used to identify the determinants of postimplant PI.RESULTS In terms of the periodontal indices,the probing depth,modified sulcus bleeding index,and marginal bone loss in the observation cohorts began to increase significantly at 6 months and 3 months,respectively,after the completion of dental implant restoration.The T2DM cases demonstrated significantly elevated counts of leukocytes,lymphocytes,and neutrophils compared to the controls at 24 hours postoperatively.Moreover,the TNF-α,IL-1β,and IL-6 concentrations started to increase significantly in the gingival crevicular fluid 3 months after the completion of dental implant restoration in both cohorts,with the observation group exhibiting higher levels than the controls at each time point.63 out of the 146 cases developed PI.Multivariate logistic regression analysis indicated that high glycosylated hemoglobin levels,smoking,daily tooth-brushing frequency of less than once,and the anterior tooth as the implant site independently contributed to postimplant PI in T2DM cases,while a tooth-brushing duration of≥3 minutes was a protective factor.CONCLUSION Patients with T2DM are at risk of developing PI following dental implantation.Clinically,it is necessary to enhance the identification of risk factors for postimplant PI,improve risk prediction,prevention,and control,and formulate targeted intervention countermeasures to reduce the occurrence of postimplant PI.
基金financial supports from the National Natural Science Foundation of China-Youth Project(51801076)the Provincial Colleges and Universities Natural Science Research Project of Jiangsu Province(18KJB430009)+1 种基金the Postdoctoral Research Support Project of Jiangsu Province(1601055C)the Senior Talents Research Startup of Jiangsu University(14JDG126)。
文摘To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.
基金Acknowledgment We thank Dr Etty N. Benveniste (University of Alabama at Birmingham, Birmingham, AL, USA) for the truncated MMP-2 promoter-driven luciferase constructs and Ms Donna Barnes for excellent secretarial assistance. This study was supported by KU William L.Valk Endowment and Kansas Mason's Foundation, and a grant from KUMC Lied Foundation to Dr Ben-Yi Li. This study was also partially supported by grants from the National Natural Science Foundation of China (No. 30370509 and No. 30370645) to Dr Ping-Yi Xu.
文摘Aim: To characterize the matrix metalloproteinases (MMP)-2 promoter and to identify androgen response elements (AREs) involved in androgen-induced MMP-2 expression. Methods: MMP-2 mRNA levels was determined by reverse transcription-polymerase chain reaction (RT-PCR). MMP-2 promoter-driven luciferase assays were used to determine the fragments responsible for androgen-induced activity. Chromatin-immunoprecipitation assay and electrophoretic mobility shift assays (EMSA) were used to verify the identified AREs in the MMP-2 promoter. Results: Androgen significantly induced MMP-2 expression at the mRNA level, which was blocked by the androgen antagonist bicalutamide. Deletion of a region encompassing base pairs -1591 to -1259 (relative to the start codon) of the MMP-2 promoter led to a significant loss of androgen-induced reporter activity. Additional deletion of the 5'-region up to -562 bp further reduced the androgen-induced MMP-2 promoter activity. Sequence analysis of these two regions revealed two putative ARE motifs. Introducing mutations in the putative ARE motifs by site-directed mutagenesis approach resulted in a dramatic loss of androgen-induced MMP-2 promoter activity, indicating that the putative ARE motifs are required for androgen-stimulated MMP-2 expression. Most importantly, the androgen receptor (AR) interacted with both motif-containing promoter regions in vivo in a chromatin immunoprecipitation assay after androgen treatment. Furthermore, the AR specifically bound to the wild-type but not mutated ARE motifs-containing probes in an in vitro EMSA assay. Conclusion: Two ARE motifs were identified to be responsible for androgen-induced MMP-2 expression in prostate cancer cells.
基金Project supported by the National Natural Science Foundation of China (61988102)the Key-Area Research and Development Program of Guangdong Province(2019B090917007)the Science and Technology Planning Project of Guangdong Province (2019B090909011)。
文摘Bi_(2)YbO_(4)Cl with a fluorite layer structure belongs to the family of the bismuth rare-earth oxyhalides Bi_(2)REO_(4)X(X=Cl,B r,I).However,the synthesis and photoelectric properties of Bi_(2)YbO_(4)Cl have almost not been reported.In this work,Bi_(2)YbO_(4)Cl was synthesized using the solid-state method and the solvothermal method.Yb3+ions show a strong characteristic absorption peak at 980 nm,which was measured by ultraviolet-visible-near-infrared absorption spectra.The transient photoconductivity of Bi_(2)YbO_(4)Cl was obtained by time-resolved terahertz spectroscopy system under 400 and 800 nm laser excitations,respectively.The frequency-dependent transient photoconductivity analysis reveals the Drude-Smith behavior in Bi_(2)YbO_(4)Cl.Under photoexcitation,the hot charge carriers with a long relaxation lifetime and a carrier mobility of 48 cm^(2)/(V·s) are obtained.The synthesis of Bi_(2)YbO_(4)Cl is of great significance for the development of novel photocatalytic and photo harvesting materials with broad spectral response.
基金The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX-406-4 KZCX1SW01 of the Chinese Academy of Sciences
文摘Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.
基金The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX-406-4 KZCX1SW01 of the Chinese Academy of Sciences
文摘Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.
文摘[Objective] This study was conducted to evaluate three training systems for Korla fragrant pear trees by comparing the characteristic parameters of light response curve and CO2 response curve, and to provide some theoretical basis for improving the pruning techniques of Korla fragrant pear trees. [Method] The light response curve and CO2 response curve of the trees trained to three systems were measured by LI-6400 portable photosynthesis system. The SPAD value was measured using SPAD-502 chlorophyll meter, and specific leaf weight was calculated, to evaluate the effects of the three training systems. [Result] The CO2 response curves of the three training systems were basically in agreement with their light response curves, but there were some differences in their characteristic parameters. Among the three training systems, the maximum net photosynthetic rate, apparent quantum yield and light compensation point of espalier trained trees were the highest, while their light saturation point was the lowest. The CO2 saturation point of delayed-open central leader trained trees and open center trained trees were 1 752 and 1 665 μmol/mol, both of which were much higher than that of espalier trained trees. In addition, the carboxylation efficiency and photorespiration rate of espalier trained trees were both higher than those of delayed-open central leader trained trees and open center trained trees, while the CO2 compensation point of espalier trained trees was the lowest. The leaf SPAD value of espalier trained trees was the largest, followed by that of open center trained trees, and the leaf SPAD value of delayed-open central leader trained trees was the smallest. In addition, the leaf area and specific leaf weight of espalier trained trees were both the highest, followed by those of open center trained trees. [Conclusion] Among the training systems for Korla fragrant pear trees, the espalier training system had better ability to capture light, higher photosynthetic productivity and strongest adaptability to light environment, and open center training system takes the second place. On the contrary, delayed-open central leader training system has the weakest adaptability to light environment, but it can adapt to a higher CO2 concentration. In summary, for the training of Korla fragrant pear trees, espalier training system, which has the highest theoretical yield, is the best among the three training systems, and delayed-open central leader training system is the worst.
文摘The relationship between Ca 2+ and ethylene response was investigated through analyzing the effect of Ca 2+ on the response to ethylene in etiolated tomato (Lycopersicon esculentum Mill cv. Lichun) seedling grown in darkness. When the etiolated tomato seedlings were treated with different concentrations of Ca 2+, the 'triple response' phenotype, ethylene production, the expression of ethylene receptor gene NEVER-RIPE (NR) and the content of cytosolic CaM were determined. With the concentration of Ca 2+ in the culture medium increasing from 0 mmol/L to 3.8 mmol/L, the 'triple response' phenotype of etiolated tomato seedling was correspondingly strengthened; meanwhile the ethylene production, the amount of NR gene expression and the concentration of CaM increased respectively. However, when the concentration of Ca 2+ was increased from 3.8 mmol/L to 10 mmol/L, the phenotype of 'triple response', ethylene production, NR gene expression, and the CaM content didn't increase further, but decreased consequently. The results indicated that the effect of Ca 2+ on the ethylene triple response in etiolated tomato seedling was relevant to ethylene biosynthesis and ethylene receptor gene expression which were influenced by applied Ca 2+, and these effects might be mediated through the change of CaM concentration in plant cell.
文摘The experimental design methodology was applied for modeling and optimizing the operation parameters on photocatalytic degradation of chloramphenicol (CAP) using TiO 2 as photocatalyst in a photoreactor. Three experimental parameters (including pH, TiO 2 concentration and CAP initial concentration) were adopted to obtain the preliminary information. The multivariate experimental design was employed to establish a quadratic model as a functional relationship between the degradation rate of CAP and three experimental parameters. The interaction effects and optimal parameters were obtained by using Design Expert software. The optimal values of the operation parameters under the related constraint conditions were found at pH 6.4, TiO 2 concentration of 0.94 g/L and CAP initial concentration of 19.97 mg/L, respectively. The degradation rate of CAP approached 85.97% under optimal conditions. The regression analysis with R 2 value of 0.9519 had a good agreement between the experimental results and the predictive values. In addition, pH and TiO 2 concentration had a significant influence on the degradation rate of CAP.
文摘Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.
基金This work was supported by grants fi'om National "863" Research Program Foundation (No. 2008AA02Z123), Key Project for drug discovery and development in China (No. 2009ZX09501-027), and National Natural Science Foundation of China (No. 30770834 and 30870961).
文摘Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therapeutic synergy between radiotherapy and androgen ablation treatment provides a promising strategy for improving the clinical outcome. Accordingly, the androgen deprivation-induced signaling pathway may also mediate radiosensitivity in PCa cells. The C4-2 cell line was derived from the androgen-sensitive LNCaP parent line under androgen-depleted condition and had acquired androgen-refractory characteristics. In our study, the response to radiation was evaluated in both LNCaP and C4-2. Results showed that C4-2 cells were more likely to survive from irradiation and appeared more aggressive in their resistance to radiation treatment compared with LNCaP, as measured by clonogenic assays and cell viability and cell cycle analyses. Gene expression analyses revealed that a set of genes involved in cell cycle arrest and DNA repair were differentially regulated in LNCaP and C4-2 in response to radiation, which was also consistent with the radiation-resistant property observed in C4-2 cells. These results strongly suggested that the radiation-resistant property may develop with progression of PCa to androgen- independent status. Not only can the LNCaP and C4-2 PCa progression model be applied for investigating androgen-refractory progression, but it can also be used to explore the development of radiation resistance in PCa.
文摘AIM: To examine whether vitamin D improved viral response and predicted treatment outcome in patients with hepatitis C virus (HCV) genotype 2-3. METHODS: Fifty patients with chronic HCV genotype 2-3 were randomized consecutively into two groups: Treatment group [20 subjects, age 48 ± 14 years, body mass index (BMI) 30 ± 6, 65% male], who received 180 μg pegylated α-interferon-2a plus oral ribavirin 800 mg/d (Peg/RBV), together with oral vitamin D3 (Vitamidyne D drops; 2000 IU/d, 10 drops/d, normal serum level > 32 ng/mL) for 24 wk; and control group (30 subjects, age 45 ± 10 years, BMI 26 ± 3, 60% male), who received identical therapy without vitamin D. HCV RNA was assessed by reverse transcription polymerase chain reaction. Undetectable HCV RNA at 4, 12 and 24 wk after treatment was considered as rapid virological response, complete early virological response, and sustained virological response (SVR), respectively. Biomarkers of in? ammation were measured. RESULTS: The treatment group with vitamin D hadhigher BMI (30 ± 6 vs 26 ± 3, P < 0.02), and high viral load (> 400 000 IU/mL, 65% vs 40%, P < 0.01) than controls. Ninety-fi ve percent of treated patients were HCV RNA negative at week 4 and 12. At 24 wk after treatment (SVR), 19/20 (95%) treated patients and 23/30 (77%) controls were HCV RNA negative (P < 0.001). Baseline serum vitamin D levels were lower at baseline (20 ± 8 ng/mL) and increased after 12 wk vitamin D treatment, to a mean level of (34 ± 11 ng/ mL). Logistic regression analysis identifi ed vitamin D supplement [odds ratio (OR) 3.0, 95% CI 2.0-4.9, P < 0.001], serum vitamin D levels (< 15 or > 15 ng/mL, OR 2.2, P < 0.01), and BMI (< 30 or > 30, OR 2.6, P < 0.01) as independent predictors of viral response. Adverse events were mild and typical of Peg/RBV. CONCLUSION: Low vitamin D levels predicts negative treatment outcome, and adding vitamin D to conventional Peg/RBV therapy for patients with HCV genotype 2-3 signifi cantly improves viral response.