Air pollution,specifically fine particulate matter(PM2.5),represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems.Accurate forecasting of PM2....Air pollution,specifically fine particulate matter(PM2.5),represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems.Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks;however,the inherent nonlinearity and dynamic variability of air quality data present significant challenges.This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and the hybrid CNN-LSTM as well as statistical models,AutoRegressive Integrated Moving Average(ARIMA)and Maximum Likelihood Estimation(MLE)for hourly PM2.5 forecasting.Model performance is quantified using Root Mean Squared Error(RMSE),Mean Absolute Error(MAE),Mean Absolute Percentage Error(MAPE),and the Coefficient of Determination(R^(2))metrics.The comparative analysis identifies optimal predictive approaches for air quality modeling,emphasizing computational efficiency and accuracy.Additionally,CNN classification performance is evaluated using a confusion matrix,accuracy,precision,and F1-score.The results demonstrate that the Hybrid CNN-LSTM model outperforms standalone models,exhibiting lower error rates and higher R^(2) values,thereby highlighting the efficacy of deep learning-based hybrid architectures in achieving robust and precise PM2.5 forecasting.This study underscores the potential of advanced computational techniques in enhancing air quality prediction systems for environmental and public health applications.展开更多
Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an...Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.展开更多
文摘Air pollution,specifically fine particulate matter(PM2.5),represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems.Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks;however,the inherent nonlinearity and dynamic variability of air quality data present significant challenges.This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and the hybrid CNN-LSTM as well as statistical models,AutoRegressive Integrated Moving Average(ARIMA)and Maximum Likelihood Estimation(MLE)for hourly PM2.5 forecasting.Model performance is quantified using Root Mean Squared Error(RMSE),Mean Absolute Error(MAE),Mean Absolute Percentage Error(MAPE),and the Coefficient of Determination(R^(2))metrics.The comparative analysis identifies optimal predictive approaches for air quality modeling,emphasizing computational efficiency and accuracy.Additionally,CNN classification performance is evaluated using a confusion matrix,accuracy,precision,and F1-score.The results demonstrate that the Hybrid CNN-LSTM model outperforms standalone models,exhibiting lower error rates and higher R^(2) values,thereby highlighting the efficacy of deep learning-based hybrid architectures in achieving robust and precise PM2.5 forecasting.This study underscores the potential of advanced computational techniques in enhancing air quality prediction systems for environmental and public health applications.
文摘Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.