In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-of...In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.展开更多
目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。...目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。采用了二元Middleton class A分布对MIMO PLC系统中噪声进行建模,提出了基于该噪声分布的最大似然检测改进算法,由于改进最大似然检测算法实现复杂度高,为了便于实现,进一步提出了用近似函数降低复杂度的2种次优的检测算法,优化了算法复杂度。仿真结果表明,与传统的基于高斯噪声分布的最大似然检测算法相比,提出的基于二元Middleton class A类噪声分布的信号检测算法在MIMO PLC系统能获得更好的性能。在性能损失较小的情况下,次优算法的复杂度明显低于最大似然检测改进算法。展开更多
针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化...针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化后验概率(maximum a posteriori,MAP)的方式推理未标记数据的所属集合。在KDD CUP99数据集上的仿真结果表明,该算法能有效地改善入侵检测系统的性能。展开更多
文摘In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.
文摘目前多输入多输出(multiple-input multiple-output,MIMO)技术已经被电力线通信(power line communication,PLC)系统采用,但由于MIMO PLC系统噪声呈非高斯分布而且各端口噪声之间存在相关性,故不能直接采用无线系统中的MIMO检测算法。采用了二元Middleton class A分布对MIMO PLC系统中噪声进行建模,提出了基于该噪声分布的最大似然检测改进算法,由于改进最大似然检测算法实现复杂度高,为了便于实现,进一步提出了用近似函数降低复杂度的2种次优的检测算法,优化了算法复杂度。仿真结果表明,与传统的基于高斯噪声分布的最大似然检测算法相比,提出的基于二元Middleton class A类噪声分布的信号检测算法在MIMO PLC系统能获得更好的性能。在性能损失较小的情况下,次优算法的复杂度明显低于最大似然检测改进算法。
文摘针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化后验概率(maximum a posteriori,MAP)的方式推理未标记数据的所属集合。在KDD CUP99数据集上的仿真结果表明,该算法能有效地改善入侵检测系统的性能。