期刊文献+
共找到186,894篇文章
< 1 2 250 >
每页显示 20 50 100
Advanced driver assistance system(ADAS)and machine learning(ML):The dynamic duo revolutionizing the automotive industry
1
作者 Harsh SHAH Karan SHAH +2 位作者 Kushagra DARJI Adit SHAH Manan SHAH 《虚拟现实与智能硬件(中英文)》 2025年第3期203-236,共34页
The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In... The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In the artificial Intelligence domain,machine learning(ML)was developed to make inferences with a degree of accuracy similar to that of humans;however,enormous amounts of data are required.Machine learning enhances the accuracy of the decisions taken by ADAS,by evaluating all the data received from various vehicle sensors.This study summarizes all the critical algorithms used in ADAS technologies and presents the evolution of ADAS technology.Initially,ADAS technology is introduced,along with its evolution,to understand the objectives of developing this technology.Subsequently,the critical algorithms used in ADAS technology,which include face detection,head-pose estimation,gaze estimation,and link detection are discussed.A further discussion follows on the impact of ML on each algorithm in different environments,leading to increased accuracy at the expense of additional computing,to increase efficiency.The aim of this study was to evaluate all the methods with or without ML for each algorithm. 展开更多
关键词 machine learning Face detection Advanced driver system
在线阅读 下载PDF
Machine Learning on Blockchain (MLOB): A New Paradigm for Computational Security in Engineering
2
作者 Zhiming Dong Weisheng Lu 《Engineering》 2025年第4期250-263,共14页
Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a part... Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a particular concern.Nevertheless,there is a research gap that prevailing solutions focus primarily on data security using blockchain but ignore computational security,making the traditional ML process vulnerable to off-chain risks.Therefore,the research objective is to develop a novel ML on blockchain(MLOB)framework to ensure both the data and computational process security.The central tenet is to place them both on the blockchain,execute them as blockchain smart contracts,and protect the execution records on-chain.The framework is established by developing a prototype and further calibrated using a case study of industrial inspection.It is shown that the MLOB framework,compared with existing ML and BT isolated solutions,is superior in terms of security(successfully defending against corruption on six designed attack scenario),maintaining accuracy(0.01%difference with baseline),albeit with a slightly compromised efficiency(0.231 second latency increased).The key finding is MLOB can significantly enhances the computational security of engineering computing without increasing computing power demands.This finding can alleviate concerns regarding the computational resource requirements of ML-BT integration.With proper adaption,the MLOB framework can inform various novel solutions to achieve computational security in broader engineering challenges. 展开更多
关键词 Engineering computing machine learning Blockchain Blockchain smart contract Deployable framework
在线阅读 下载PDF
红火蚁SiMLs免疫响应不同病原物的表达模式分析
3
作者 康泽泓 朱展鹏 +5 位作者 蔺良杰 吴洪鑫 李昂 陆永跃 金丰良 许小霞 《环境昆虫学报》 北大核心 2025年第3期870-882,共13页
相关脂质识别蛋白由一类具有ML(Myeloid differentiation factor-2 related lipid recognition protein)单结构域的蛋白质组成,在脂类识别和天然免疫信号传导途径中起重要作用。ML蛋白家族成员在节肢动物中众多,功能复杂,ML蛋白研究聚... 相关脂质识别蛋白由一类具有ML(Myeloid differentiation factor-2 related lipid recognition protein)单结构域的蛋白质组成,在脂类识别和天然免疫信号传导途径中起重要作用。ML蛋白家族成员在节肢动物中众多,功能复杂,ML蛋白研究聚焦于宿主与病毒之间的互作,但是对于ML蛋白在入侵昆虫中的功能研究未见报道。本研究以入侵昆虫红火蚁Solenopsis invicta为研究对象,基于红火蚁基因组和转录组数据,筛选鉴定获得5个ML基因(SiML1~5),生物信息学分析表明SiMLs家族包含一个信号肽和一个典型ML结构域,其中ML结构域几乎覆盖了SiML1(25~151 aa)、SiML2(23~150 aa)、SiML3(24~145 aa)、SiML4(21~150 aa)和SiML5(58~175 aa)蛋白的整个编码区,并含有6个保守的半胱氨酸残基。系统进化分析显示红火蚁SiML1,SiML2,SiML3和SiML4在同一个分支,与紫苑叶蝉Macrosteles quadrilineatus(MqML)亲缘关系较近;而红火蚁SiML5与中红侧沟茧蜂Microplitis mediator(MmML3)在同一个分支上。荧光定量PCR检测显示红火蚁SiMLs家族基因在红火蚁6个组织中均有转录,在脂肪体中表达量最高;SiMLs家族基因在整个发育历期都有表达,在卵、幼虫、蛹和成虫变态期间均有差异表达,主要是上调表达,表明ML蛋白可能参与红火蚁的变态发育过程。用细菌和真菌病原菌通过喷洒或浸泡红火蚁大型工蚁进行免疫诱导,RT-qPCR结果显示火蚁大型工蚁SiMLs家族成员在大肠杆菌诱导3~48 h后均显著上调表达,在金龟子绿僵菌和白僵菌菌诱导后,早期(3~12 h)SiMLs家族成员表达升高,后期(24~48 h)表达受到抑制。本研究表明红火蚁SiMLs能够响应病原菌的入侵,且针对不同病原体有不同的表达模式,这些发现为SiMLs蛋白的功能研究奠定了基础。 展开更多
关键词 ml家族成员 红火蚁 病原物 表达模式 免疫反应
在线阅读 下载PDF
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region 被引量:2
4
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
原文传递
基于HTML的Web系统在植保机中的应用研究
5
作者 陈伟卫 《农机化研究》 北大核心 2025年第3期181-185,共5页
为了实现农田信息的实时监控,将农田信息进行可视化处理,设计了本系统。植保机作为农田中数据采集节点和地面工作站的中继站,可实现将农田信息上传地面工作站,且可利用HTML完成农田数据的Web可视化处理。同时,依据通讯路径损耗,确定通... 为了实现农田信息的实时监控,将农田信息进行可视化处理,设计了本系统。植保机作为农田中数据采集节点和地面工作站的中继站,可实现将农田信息上传地面工作站,且可利用HTML完成农田数据的Web可视化处理。同时,依据通讯路径损耗,确定通讯频率为430M,植保机飞行高度为750 m;基于模拟退火算法,实现植保机飞行路径规划;利用HTML完成用户Web网页设计;并对系统进行测试。测试结果表明:土壤湿度监控精度相对误差分布区间为[0.57%, 2.79%],Web网页可以实现各数据节点农田信息的实时显示。 展开更多
关键词 植保机 路径规划 模拟退火算法 WEB可视化
在线阅读 下载PDF
整合集成预测约束与错误预测熵最大化的MLS点云分类方法
6
作者 雷相达 管海燕 董震 《遥感学报》 北大核心 2025年第1期329-340,共12页
许多深度学习点云分类方法通过增加点云特征聚合模块,增强点云特征的表达能力,但该类方法往往会带来训练参数增加以及模型过拟合的问题。针对该问题,本文提出了一个整合集成预测约束与错误预测熵最大化的深度学习方法用于移动激光扫描ML... 许多深度学习点云分类方法通过增加点云特征聚合模块,增强点云特征的表达能力,但该类方法往往会带来训练参数增加以及模型过拟合的问题。针对该问题,本文提出了一个整合集成预测约束与错误预测熵最大化的深度学习方法用于移动激光扫描MLS(Mobile Laser Scanning)点云分类。方法通过集成预测约束分支以及错误预测熵最大化分支可以在不增加训练参数的情况下,增强基线网络的点云特征表达,提高模型泛化能力。其中集成预测约束分支首先通过记录点云在训练过程中的预测值,生成集成预测值,然后采用一致性约束增强模型的点云特征表达。错误预测熵最大化分支鼓励模型对错误预测点进行熵值最大化,增加该点的不确定性,提高模型的泛化能力。所提方法在多个公开MLS点云数据集上进行验证,结果表明所提方法可以在不增加训练参数的情况下,提高基线方法的分类性能。与对比方法相比,所提方法在Toronto3D、WHU-MLS、Paris数据集上获得了最优的平均交并比(83.68%、65.85%、44.19%),表明了方法的有效性。 展开更多
关键词 遥感 mlS点云分类 深度学习 集成预测约束 错误预测熵最大化
原文传递
全自动智能静脉用药调配机器人ML300在静脉用药调配中心的开发与应用 被引量:2
7
作者 王冠元 李文莉 +1 位作者 刘婧琳 张洁 《中国组织工程研究》 北大核心 2025年第34期7362-7368,共7页
目的:探讨全自动智能静脉用药调配机器人ML300在静脉用药调配中心中的开发与应用。方法:抽取2024-06-01/30天津医科大学肿瘤医院静脉用药调配中心含有注射用奥美拉唑钠、维生素C注射液、异甘草酸镁3种药物的配置医嘱处方各100份,按处方... 目的:探讨全自动智能静脉用药调配机器人ML300在静脉用药调配中心中的开发与应用。方法:抽取2024-06-01/30天津医科大学肿瘤医院静脉用药调配中心含有注射用奥美拉唑钠、维生素C注射液、异甘草酸镁3种药物的配置医嘱处方各100份,按处方配置方法分为对照组(n=100)、实验组(n=100),对照组应用人工模拟临床工作模式配置上述3种药物,操作由若干人员完成;实验组应用全自动智能智能静脉用药调配机器人ML300配置上述3种药物,操作由一人完成。对比两组配置上述3种药物的配药效率、药物残留量、不溶性微粒合格率、微生物检出率。结果与结论:实验组3种药物配药效率与不溶性微粒合格率均高于对照组(P<0.001),3种药物残留量与微生物检出率均低于对照组(P<0.001)。以注射用奥美拉唑钠、维生素C注射液、异甘草酸镁3种药物为例,全自动智能静脉用药调配机器人ML300可提高静脉用药调配中心工作人员的配药效率、优化配药质量。 展开更多
关键词 ml300 静脉用药调配中心 药物配置 开发 应用 工程化材料
暂未订购
一种基于ML-PMRF的复杂仿真系统可信度智能分配方法
8
作者 张欢 李伟 +2 位作者 张冰 马萍 杨明 《系统工程与电子技术》 北大核心 2025年第5期1516-1524,共9页
为保证复杂仿真系统达到可信度要求和缩短开发周期,应在构建复杂仿真系统之初确定各个仿真子系统的可信度。为此,提出一种复杂仿真系统可信度智能分配方法,在明确复杂仿真系统总体可信度的情况下获取各仿真子系统的可信度分配结果。根... 为保证复杂仿真系统达到可信度要求和缩短开发周期,应在构建复杂仿真系统之初确定各个仿真子系统的可信度。为此,提出一种复杂仿真系统可信度智能分配方法,在明确复杂仿真系统总体可信度的情况下获取各仿真子系统的可信度分配结果。根据复杂仿真系统的组成和结构,提出基于多层成对马尔可夫随机场(multi-layer pairwise Markov random field,ML-PMRF)的复杂仿真系统可信度分配模型构建方法。基于最大后验推理和离散萤火虫群优化,提出一种面向ML-PMRF的智能推理方法。通过实例应用及对比实验,验证了所提方法的有效性和合理性。 展开更多
关键词 复杂仿真系统 可信度分配 多层成对马尔可夫随机场 智能推理
在线阅读 下载PDF
基于改进MLEA算法的多目标离散车间节能调度
9
作者 顾文斌 郭镇洋 +2 位作者 刘斯麒 苑明海 裴凤雀 《计算机集成制造系统》 北大核心 2025年第7期2499-2514,共16页
针对多目标离散车间节能调度问题,以优化最大完工时间和加工总能耗为目标,提出一种多邻域局部增强搜索算法(MLEA)。根据问题特点,引入工序向量(OS)自指定规则对解空间降维,设计一种机器贪婪分配机制,以均衡机器负载,为优化初始解的质量... 针对多目标离散车间节能调度问题,以优化最大完工时间和加工总能耗为目标,提出一种多邻域局部增强搜索算法(MLEA)。根据问题特点,引入工序向量(OS)自指定规则对解空间降维,设计一种机器贪婪分配机制,以均衡机器负载,为优化初始解的质量,提出一种基于Pareto支配关系的双规则协调种群初始化方法。受生物激素反馈调节机制启发,提出自适应全局强化搜索算子和局部增强搜索算子,两种算子交替运行,以提高算法的全局搜索能力和局部搜索深度,增加记忆池矩阵,避免算法过早收敛。最后,通过对比实验,验证了所提算法在解决多目标离散车间节能调度问题上的优越性和稳定性。 展开更多
关键词 离散车间 节能调度 机器贪婪分配机制 全局强化搜索算子 局部增强搜索算子
在线阅读 下载PDF
Structural Topology Design for Electromagnetic Performance Enhancement of Permanent-Magnet Machines 被引量:2
10
作者 Pengjie Xiang Liang Yan +3 位作者 Xiaoshuai Liu Xinghua He Nannan Du Han Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期411-432,共22页
Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el... Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications. 展开更多
关键词 Actuators Robot joint Electric-vehicle motor Permanent-magnet machines Axial-flux PM machine Dualrotor machine Magnet patterns Torque density Torque ripple Power density
在线阅读 下载PDF
ML-SPAs:Fortifying Healthcare Cybersecurity Leveraging Varied Machine Learning Approaches against Spear Phishing Attacks
11
作者 Saad Awadh Alanazi 《Computers, Materials & Continua》 SCIE EI 2024年第12期4049-4080,共32页
Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus s... Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches. 展开更多
关键词 Spear phishing attack CYBERSECURITY healthcare security data privacy machine learning SEQUENTIAL hierarchal Algorithm
在线阅读 下载PDF
基于二次分解与MAML-MHA-DELM的电力行业碳排放预测模型研究
12
作者 张新生 张红文 聂达文 《安全与环境学报》 北大核心 2025年第9期3386-3399,共14页
为了有效预测电力行业碳排放趋势,解决在碳排放预测中遇到的非线性、复杂性等问题,研究提出了一种新型电力行业碳排放预测模型。该模型基于二次分解方法,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decompos... 为了有效预测电力行业碳排放趋势,解决在碳排放预测中遇到的非线性、复杂性等问题,研究提出了一种新型电力行业碳排放预测模型。该模型基于二次分解方法,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与变分模态分解(Variational Mode Decomposition,VMD),以处理数据的非线性和复杂性。此外,采用模型无关元学习(Model-Agnostic Meta-Learning,MAML)优化结合多头注意力机制(Multi-Head Attention,MHA)增强特征提取的分布式极限学习机(Distributed Extreme Learning Machine,DELM)构建预测框架,以提高模型的准确性和泛化性能。首先,根据政府间气候变化专门委员会(The Intergovernmental Panel on Climate Change,IPCC)中方法计算电力行业化石燃料在1991—2022年的碳排放情况;其次,采用广义灰色关联分析(Grey Relation Analysis,GRA)与皮尔逊相关系数(Pearson Correlation Coefficient,Pearson)对影响因素进行筛选,并筛选出一次能源生产总量、城镇化率和电力行业固定投资等11个相关性影响因素;再次,使用CEEMDAN-VMD二次分解将因变量电力行业碳排放量分解成4个多频模态,并将4个模态分别代入经MAML-MHA算法优化的DELM模型进行预测;最后,将各分解序列的预测值进行逆归一化相加,即可得到电力行业碳排放预测值,并进行消融试验。结果显示,CEEMDAN-VMD-MAML-MHA-DELM模型性能最优,其均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)及决定系数(R^(2))分别为0.3494万t、0.3763万t、0.8383%和0.9893。这表明该模型在电力行业碳排放预测方面效果显著,能为电力行业低碳发展提供一定参考。 展开更多
关键词 环境工程学 自适应噪声完备集合经验模态分解 变分模态分解 分布式极限学习机
原文传递
基于IMLZC和SOA-ELM的轴承损伤识别方法 被引量:1
13
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
14
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Machine learning of pyrite geochemistry reconstructs the multi-stage history of mineral deposits 被引量:1
15
作者 Pengpeng Yu Yuan Liu +5 位作者 Hanyu Wang Xi Chen Yi Zheng Wei Cao Yiqu Xiong Hongxiang Shan 《Geoscience Frontiers》 2025年第3期81-93,共13页
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite... The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits. 展开更多
关键词 machine learning Random forest Support vector machine PYRITE Multi-stage genesis Keketale deposit
在线阅读 下载PDF
极寒地区S355ML钢埋弧焊焊接工艺开发
16
作者 孙灵军 孙玉敬 +3 位作者 孙洪亮 牛天军 王兴远 靳伟亮 《金属加工(热加工)》 2025年第7期42-45,共4页
极寒地区采用的S355ML钢具有强度高、低温韧性好的特点,通过合理选取焊接材料,并对预热温度、最大层间温度及热输入的控制,开发了符合极寒地区S355ML钢的-50℃低温韧性要求的埋弧焊焊接工艺。埋弧焊焊接工艺评定试验结果表明:接头的强... 极寒地区采用的S355ML钢具有强度高、低温韧性好的特点,通过合理选取焊接材料,并对预热温度、最大层间温度及热输入的控制,开发了符合极寒地区S355ML钢的-50℃低温韧性要求的埋弧焊焊接工艺。埋弧焊焊接工艺评定试验结果表明:接头的强度满足要求,塑性良好,低温韧性远超项目合格值,工艺开发取得成功。 展开更多
关键词 S355ml 埋弧焊 工艺开发
在线阅读 下载PDF
Streamlined photonic reservoir computer with augmented memory capabilities 被引量:3
17
作者 Changdi Zhou Yu Huang +5 位作者 Yigong Yang Deyu Cai Pei Zhou Kuenyao Lau Nianqiang Li Xiaofeng Li 《Opto-Electronic Advances》 2025年第1期45-57,共13页
Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While suc... Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks. 展开更多
关键词 photonic reservoir computing machine learning vertical-cavity surface-emitting laser quasi-convolution coding augmented memory capabilities
在线阅读 下载PDF
Predicting the efficiency of arsenic immobilization in soils by biochar using machine learning 被引量:1
18
作者 Jin-Man Cao Yu-Qian Liu +5 位作者 Yan-Qing Liu Shu-Dan Xue Hai-Hong Xiong Chong-Lin Xu Qi Xu Gui-Lan Duan 《Journal of Environmental Sciences》 2025年第1期259-267,共9页
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily ... Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency. 展开更多
关键词 BIOCHAR Arsenic immobilization SOIL machine learning
原文传递
Machine learning-assisted microfluidic approach for broad-spectrum liposome size control 被引量:1
19
作者 Yujie Jia Xiao Liang +6 位作者 Li Zhang Jun Zhang Hajra Zafar Shan Huang Yi Shi Jian Chen Qi Shen 《Journal of Pharmaceutical Analysis》 2025年第6期1238-1248,共11页
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide... Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications. 展开更多
关键词 Liposomes MICROFLUIDICS Liposomal size SHM machine learning
在线阅读 下载PDF
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
20
作者 Petr Opela Josef Walek Jaromír Kopecek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期713-732,共20页
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al... In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis. 展开更多
关键词 machine learning Gaussian process regression artificial neural networks support vector machine hot deformation behavior
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部