Mitogen-activated protein kinases(MAPKs,also known as MPKs)regulate diverse cellular and physiological functions,and dual-specificity MAPK phosphatases(MKPs)modulate MAPK signalling through MAPK dephosphorylation and ...Mitogen-activated protein kinases(MAPKs,also known as MPKs)regulate diverse cellular and physiological functions,and dual-specificity MAPK phosphatases(MKPs)modulate MAPK signalling through MAPK dephosphorylation and inactivation.Due to lacking of overall understanding for the regulatory networks between Chrysanthemum morifolium MKPs(CmMKPs)and C.morifolium MAPKs(CmMPKs),we systematically studied the interactions between four groups of CmMPKs and eight identified CmMKPs in chrysanthemum and found that the interaction between the specific CmMKP and the specific CmMPK differed from those in other plants.Furthermore,the expression of CmMKP1 and CmMKP1-LIKE1showed opposite trends during the development of chrysanthemum flower buds under salt treatment and Alternaria alternata inoculation,but these genes could interact with the same CmMPKs,providing insight into the subfunctionalization of paralogues.Amino acid variations(M87V,T277P and V6L)in dual-specificity protein phosphatases(DsPTP1)-LIKE1/2/3 changed the interactions of these proteins with the four CmMPK groups in chrysanthemum,providing evidence for the de/neofunctionalization of paralogues in polyploids,suggesting that we can identify the key functional sites of proteins by studying polyploid paralogues.展开更多
Serine protease 50(PRSS50/TSP50)is highly expressed in spermatocytes.Our study investigated its role in testicular development and spermatogenesis.Initially,PRSS50 knockdown was observed to impair DNA synthesis in spe...Serine protease 50(PRSS50/TSP50)is highly expressed in spermatocytes.Our study investigated its role in testicular development and spermatogenesis.Initially,PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes.To further explore this,we generated PRSS50 knockout(Prss50^(−/−))mice(Mus musculus),which exhibited abnormal spermatid nuclear compression and reduced male fertility.Furthermore,dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50^(−/−)mice,accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells.Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2(ERK1/2)and elevated levels of MAP kinase phosphatase 3(MKP3),a specific ERK antagonist,potentially accounting for testicular dysplasia in adolescent Prss50−/−mice.Taken together,these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis,with the MKP3/ERK signaling pathway playing a significant role in this process.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.31870694,31870279,32002083)the Natural Science Fund of Jiangsu Province(Grant No.BK20190076)+2 种基金the National Key R&D Program of China(Grant No.2018YFD1000403)the Foundation of Central Laboratory of Xinyang Agriculture and Forestry University(Grant No.FCL202002)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘Mitogen-activated protein kinases(MAPKs,also known as MPKs)regulate diverse cellular and physiological functions,and dual-specificity MAPK phosphatases(MKPs)modulate MAPK signalling through MAPK dephosphorylation and inactivation.Due to lacking of overall understanding for the regulatory networks between Chrysanthemum morifolium MKPs(CmMKPs)and C.morifolium MAPKs(CmMPKs),we systematically studied the interactions between four groups of CmMPKs and eight identified CmMKPs in chrysanthemum and found that the interaction between the specific CmMKP and the specific CmMPK differed from those in other plants.Furthermore,the expression of CmMKP1 and CmMKP1-LIKE1showed opposite trends during the development of chrysanthemum flower buds under salt treatment and Alternaria alternata inoculation,but these genes could interact with the same CmMPKs,providing insight into the subfunctionalization of paralogues.Amino acid variations(M87V,T277P and V6L)in dual-specificity protein phosphatases(DsPTP1)-LIKE1/2/3 changed the interactions of these proteins with the four CmMPK groups in chrysanthemum,providing evidence for the de/neofunctionalization of paralogues in polyploids,suggesting that we can identify the key functional sites of proteins by studying polyploid paralogues.
基金supported by the Research Foundation of Jilin Provincial Science&Technology Development(20210204164YY,YDZJ202201ZYTS524,20230204067YY,20230204069YY)Jilin Province Development and Reform Commission(2022C044-3)Fundamental Research Funds for the Central Universities(135131002)。
文摘Serine protease 50(PRSS50/TSP50)is highly expressed in spermatocytes.Our study investigated its role in testicular development and spermatogenesis.Initially,PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes.To further explore this,we generated PRSS50 knockout(Prss50^(−/−))mice(Mus musculus),which exhibited abnormal spermatid nuclear compression and reduced male fertility.Furthermore,dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50^(−/−)mice,accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells.Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2(ERK1/2)and elevated levels of MAP kinase phosphatase 3(MKP3),a specific ERK antagonist,potentially accounting for testicular dysplasia in adolescent Prss50−/−mice.Taken together,these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis,with the MKP3/ERK signaling pathway playing a significant role in this process.