期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高阶累计统计量的微生物发酵过程监测
被引量:
4
1
作者
常鹏
王普
高学金
《控制与决策》
EI
CSCD
北大核心
2017年第12期2273-2278,共6页
传统多向核独立成分分析(MKICA)方法的实质是把基于独立成分分析(ICA)中的白化处理主元分析(PCA)替换为核主元分析(KPCA)后利用二阶统计量进行过程监控,并未利用过程数据的阶段特性和高阶累积量信息,为了解决此问题,提出高阶累积量分析(...
传统多向核独立成分分析(MKICA)方法的实质是把基于独立成分分析(ICA)中的白化处理主元分析(PCA)替换为核主元分析(KPCA)后利用二阶统计量进行过程监控,并未利用过程数据的阶段特性和高阶累积量信息,为了解决此问题,提出高阶累积量分析(HCA)与多向核熵独立成份分析(MKECA)相结合的多向高阶累计量的核熵独立成分分析方法(HCA-MKEICA).首先,采用核熵独立成份分析(KECA)对原始数据进行数据转换,解决数据的非线性;然后,在高维核熵空间利用HCA技术构建新的统计量用于过程监控;最后,将该方法应用于青霉素仿真平台和实际的工业过程并与MKICA方法进行对比,以验证所提出方法的有效性.
展开更多
关键词
间歇过程监控
MKICA
高阶累积量
MKECA
mkeica
原文传递
题名
基于高阶累计统计量的微生物发酵过程监测
被引量:
4
1
作者
常鹏
王普
高学金
机构
北京工业大学信息学部
北京工业大学教育部工程中心数字社区
北京工业大学计算智能与智能系统北京市重点实验室
出处
《控制与决策》
EI
CSCD
北大核心
2017年第12期2273-2278,共6页
基金
国家自然科学基金项目(61640312
61364009
+1 种基金
61174109)
北京市自然科学基金项目(4172007)
文摘
传统多向核独立成分分析(MKICA)方法的实质是把基于独立成分分析(ICA)中的白化处理主元分析(PCA)替换为核主元分析(KPCA)后利用二阶统计量进行过程监控,并未利用过程数据的阶段特性和高阶累积量信息,为了解决此问题,提出高阶累积量分析(HCA)与多向核熵独立成份分析(MKECA)相结合的多向高阶累计量的核熵独立成分分析方法(HCA-MKEICA).首先,采用核熵独立成份分析(KECA)对原始数据进行数据转换,解决数据的非线性;然后,在高维核熵空间利用HCA技术构建新的统计量用于过程监控;最后,将该方法应用于青霉素仿真平台和实际的工业过程并与MKICA方法进行对比,以验证所提出方法的有效性.
关键词
间歇过程监控
MKICA
高阶累积量
MKECA
mkeica
Keywords
monitoring batch process
MKICA
hige-order cumulant anlaysis: MKECA
mkeica
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于高阶累计统计量的微生物发酵过程监测
常鹏
王普
高学金
《控制与决策》
EI
CSCD
北大核心
2017
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部