期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于MK-RVM的地铁列车继电器剩余寿命预测 被引量:2
1
作者 马垚 胡新杨 +1 位作者 刘志强 魏秀琨 《现代城市轨道交通》 2025年第3期71-79,共9页
继电器作为地铁列车电气系统的关键部件,其可靠性直接影响地铁列车的安全运行。因此,对地铁列车继电器的剩余寿命(RUL)进行精准预测尤为重要。文章提出一种基于多核相关向量机(MK-RVM)的继电器剩余寿命预测模型,并通过贝叶斯优化算法对... 继电器作为地铁列车电气系统的关键部件,其可靠性直接影响地铁列车的安全运行。因此,对地铁列车继电器的剩余寿命(RUL)进行精准预测尤为重要。文章提出一种基于多核相关向量机(MK-RVM)的继电器剩余寿命预测模型,并通过贝叶斯优化算法对相关超参数进行优化。该模型能够基于预测得到的RUL值和方差获得累积分布函数,进而估算在当前开合次数下继电器至少还能运行一段时间的概率。同时以A型号继电器为例,通过搭建的继电器特性参数测试实验台采集10种时间特征参数,并基于筛选的关键特征参数进行剩余寿命预测实验。实验结果显示,A型号继电器两对触点RUL预测的平均均方根误差为48966,即预测误差约为4个月,充分证明MK-RVM方法在继电器剩余寿命预测中的有效性。 展开更多
关键词 地铁 列车继电器 剩余寿命预测 相关向量机 mk-rvm
在线阅读 下载PDF
露天矿边坡变形预测的协同进化多核相关向量机模型 被引量:7
2
作者 罗亦泳 张立亭 +1 位作者 鲁铁定 周世健 《中国安全科学学报》 CAS CSCD 北大核心 2016年第11期110-114,共5页
为提高露天矿边坡变形预测精度,利用协同进化粒子群(CEPSO)优化多核相关向量机(MK-RVM)的参数,构建协同进化多核相关向量机(CEPSO-MK-RVM),并将此模型应用于露天矿边坡变形预测。将CEPSO-MK-RVM的结果与协同进化多项式核函数相关向量机(... 为提高露天矿边坡变形预测精度,利用协同进化粒子群(CEPSO)优化多核相关向量机(MK-RVM)的参数,构建协同进化多核相关向量机(CEPSO-MK-RVM),并将此模型应用于露天矿边坡变形预测。将CEPSO-MK-RVM的结果与协同进化多项式核函数相关向量机(CEPSO-PolyRVM)、协同进化高斯核函数相关向量机(CEPSO-Gauss-RVM)及修正果蝇优化下的支持向量回归(MFOA-SVR)的结果进行对比,并分析CEPSO对MK-RVM参数的优化效果。结果表明,CEPSO比标准粒子群优化(PSO)算法具有更好的优化效率及最优解;用CEPSO-MK-RVM模型得到的结果,4个精度指标均优于其余3种方法,边坡变形预测的精度得到有效提高。 展开更多
关键词 边坡变形 多核相关向量机(mk-rvm) 协同进化粒子群(CEPSO) 露天矿 多核函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部