Based on the hindcasts from five subseasonal-to-seasonal(S2S)models participating in the S2S Prediction Project,this study evaluates the performance of the multimodel ensemble(MME)approach in predicting the subseasona...Based on the hindcasts from five subseasonal-to-seasonal(S2S)models participating in the S2S Prediction Project,this study evaluates the performance of the multimodel ensemble(MME)approach in predicting the subseasonal precipitation anomalies during summer in China and reveals the contributions of possible driving factors.The results suggest that while single-model ensembles(SMEs)exhibit constrained predictive skills within a limited forecast lead time of three pentads,the MME illustrates an enhanced predictive skill at a lead time of up to four pentads,and even six pentads,in southern China.Based on both deterministic and probabilistic verification metrics,the MME consistently outperforms SMEs,with a more evident advantage observed in probabilistic forecasting.The superior performance of the MME is primarily attributable to the increase in ensemble size,and the enhanced model diversity is also a contributing factor.The reliability of probabilistic skill is largely improved due to the increase in ensemble members,while the resolution term does not exhibit consistent improvement.Furthermore,the Madden–Julian Oscillation(MJO)is revealed as the primary driving factor for the successful prediction of summer precipitation in China using the MME.The improvement by the MME is not solely attributable to the enhancement in the inherent predictive capacity of the MJO itself,but derives from its capability in capturing the more realistic relationship between the MJO and subseasonal precipitation anomalies in China.This study establishes a scientific foundation for acknowledging the advantageous predictive capability of the MME approach in subseasonal predictions of summer precipitation in China,and sheds light on further improving S2S predictions.展开更多
In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-gue...In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.展开更多
2023年春季,我国西南地区发生了严重的气象干旱,对当地社会经济造成严重影响。为深入认识这次干旱事件的成因、并为未来西南地区春旱的预测提供科学依据,本文利用站点观测数据、美国国家环境预测中心和国家大气研究中心(National Center...2023年春季,我国西南地区发生了严重的气象干旱,对当地社会经济造成严重影响。为深入认识这次干旱事件的成因、并为未来西南地区春旱的预测提供科学依据,本文利用站点观测数据、美国国家环境预测中心和国家大气研究中心(National Centers for Environmental Prediction/National Center for Atmospheric Research,NCEP/NCAR)再分析数据、美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)的海表温度等,采用T-N波作用通量和合成分析等方法,从海温和热带大气季节内振荡(Madden-Julian Oscillation,MJO)的角度深入探讨此次春旱成因。结果表明:(1)2023年我国西南春旱是高温干旱复合事件,3月干旱发生在中部,4月干旱加剧并向西扩展,5月干旱持续。(2)3月北太平洋的马蹄形海温异常导致西风急流偏南偏西,抑制了西南地区的降水。(3)4月印度洋暖海温通过Kelvin波导致孟加拉湾附近的反气旋式环流异常,西北太平洋暖海温通过Rossby波导致南海至菲律宾的气旋式环流异常,造成西南地区南部出现偏北风,导致水汽辐散,加剧干旱。(4)5月MJO长时间维持在西太平洋,通过Gill响应引发南海至菲律宾对流层低层的气旋异常,减少偏南水汽的输送,从而使得西南干旱持续。展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.42175052 and U2442206)the Joint Research Project for Meteorological Capacity Improvement(Grant No.23NLTSQ007,23NLTSZ003)+2 种基金the Innovative Development Special Project of the China Meteorological Administration(Grant No.CXFZ2023J002)the National Key R&D Program of China(Grant No.2023YFC3007700,2024YFC3013100)the China Meteorological Administration Youth Innovation Team(Grant No.CMA2024QN06)。
文摘Based on the hindcasts from five subseasonal-to-seasonal(S2S)models participating in the S2S Prediction Project,this study evaluates the performance of the multimodel ensemble(MME)approach in predicting the subseasonal precipitation anomalies during summer in China and reveals the contributions of possible driving factors.The results suggest that while single-model ensembles(SMEs)exhibit constrained predictive skills within a limited forecast lead time of three pentads,the MME illustrates an enhanced predictive skill at a lead time of up to four pentads,and even six pentads,in southern China.Based on both deterministic and probabilistic verification metrics,the MME consistently outperforms SMEs,with a more evident advantage observed in probabilistic forecasting.The superior performance of the MME is primarily attributable to the increase in ensemble size,and the enhanced model diversity is also a contributing factor.The reliability of probabilistic skill is largely improved due to the increase in ensemble members,while the resolution term does not exhibit consistent improvement.Furthermore,the Madden–Julian Oscillation(MJO)is revealed as the primary driving factor for the successful prediction of summer precipitation in China using the MME.The improvement by the MME is not solely attributable to the enhancement in the inherent predictive capacity of the MJO itself,but derives from its capability in capturing the more realistic relationship between the MJO and subseasonal precipitation anomalies in China.This study establishes a scientific foundation for acknowledging the advantageous predictive capability of the MME approach in subseasonal predictions of summer precipitation in China,and sheds light on further improving S2S predictions.
基金supported by the National Natural Science Foundation of China(Grant Nos.41975090,U2242201,42075077)the Natural Science Foundation of Hunan Province,China(2022JJ20043)the Science and Technology Innovation Program of Hunan Province,China(2022RC1239)。
文摘In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.
文摘2023年春季,我国西南地区发生了严重的气象干旱,对当地社会经济造成严重影响。为深入认识这次干旱事件的成因、并为未来西南地区春旱的预测提供科学依据,本文利用站点观测数据、美国国家环境预测中心和国家大气研究中心(National Centers for Environmental Prediction/National Center for Atmospheric Research,NCEP/NCAR)再分析数据、美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)的海表温度等,采用T-N波作用通量和合成分析等方法,从海温和热带大气季节内振荡(Madden-Julian Oscillation,MJO)的角度深入探讨此次春旱成因。结果表明:(1)2023年我国西南春旱是高温干旱复合事件,3月干旱发生在中部,4月干旱加剧并向西扩展,5月干旱持续。(2)3月北太平洋的马蹄形海温异常导致西风急流偏南偏西,抑制了西南地区的降水。(3)4月印度洋暖海温通过Kelvin波导致孟加拉湾附近的反气旋式环流异常,西北太平洋暖海温通过Rossby波导致南海至菲律宾的气旋式环流异常,造成西南地区南部出现偏北风,导致水汽辐散,加剧干旱。(4)5月MJO长时间维持在西太平洋,通过Gill响应引发南海至菲律宾对流层低层的气旋异常,减少偏南水汽的输送,从而使得西南干旱持续。
基金China National 973 project(2015CB453200)China National project(41575070)+7 种基金NSFC(41475084)OLR(N00014-16-12260)NRL(N00173-13-1-G902)Jiangsu NSF Key Project(BK20150062)Jiangsu Shuang-Chuang Team(R2014SCT001)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)China Special Fund for Meteorological Research in the Public Interest(GYHY201306028)Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation(CXLX13_486)