We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It i...We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It is found that the geometric phase is induced by a counterpart of the Stark shift. This effect is due to distinct shifts in the field frequency induced by interaction between different states (|e〉 and |g〉 ) and cavity field, and a simple geometric interpretation of this phenomenon is given, which is helpful to understand the natural origin of the geometric phase.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10575040.
文摘We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It is found that the geometric phase is induced by a counterpart of the Stark shift. This effect is due to distinct shifts in the field frequency induced by interaction between different states (|e〉 and |g〉 ) and cavity field, and a simple geometric interpretation of this phenomenon is given, which is helpful to understand the natural origin of the geometric phase.