A regional Arctic Ocean configuration of the Massachusetts Institute of Technology General Circulation Model(MITgcm)is applied to simulate the Arctic sea ice from 1991 to 2012.The simulations are evaluated by comparin...A regional Arctic Ocean configuration of the Massachusetts Institute of Technology General Circulation Model(MITgcm)is applied to simulate the Arctic sea ice from 1991 to 2012.The simulations are evaluated by comparing them with observations from different sources.The results show that MITgcm can reproduce the interannual and seasonal variability of the sea-ice extent,but underestimates the trend in sea-ice extent,especially in September.The ice concentration and thickness distributions are comparable to those from the observations,with most deviations within the observational uncertainties and less than 0.5 m,respectively.The simulated sea-ice extents are better correlated with observations in September,with a correlation coefficient of 0.95,than in March,with a correlation coefficient of 0.83.However,the distributions of sea-ice concentration are better simulated in March,with higher pattern correlation coefficients(0.98)than in September.When the model underestimates the atmospheric influence on the sea-ice evolution in March,deviations in the sea-ice concentration arise at the ice edges and are higher than those in September.In contrast,when the model underestimates the oceanic boundaries’influence on the September sea-ice evolution,disagreements in the distribution of the sea-ice concentration and its trend are found over most marginal seas in the Arctic Ocean.The uncertainties of the model,whereby it fails to incorporate the atmospheric information in March and oceanic information in September,contribute to varying model errors with the seasons.展开更多
We use a high-resolution numerical simulation to analyze the generation and evolution of semidiurnal internal tides in the Weddell-Scotia Confluence.Our results indicate that two ridges near the Antarctic Peninsula,th...We use a high-resolution numerical simulation to analyze the generation and evolution of semidiurnal internal tides in the Weddell-Scotia Confluence.Our results indicate that two ridges near the Antarctic Peninsula,the South Scotia Ridge(SSR)and the Philip Ridge(PR),are energetic sources of semidiurnal internal tides.The strongest semidiurnal barotropic to baroclinic energy conversion occurs around the crest of the SSR,reaching 0.3 W/m^(2).The depthintegrated,tidally averaged semidiurnal internal tide energy fluxes that radiated from the SSR reach about 2 kW/m.The northward semidiurnal internal tide energy fluxes entering the Scotia Sea are stronger than the southward energy fluxes entering the Powell Basin.For the SSR region between the South Orkney Plateau and Elephant Island,the areaintegrated barotropic to baroclinic conversion rate is 0.71 GW,of which 0.56 GW(79%)dissipates locally.The dissipation of internal tides occurs mainly in water depths of less than 1000 m.The dissipation rate over the SSR is as high as 10−7 W/kg.The energy fluxes create an anticlockwise gyre between the SSR and PR.The horizontal kinetic energy and available potential energy oscillate sinusoidally with peaks occurring at quarter-wavelength intervals.This energy pattern suggests the formation of standing waves due to interference between the semidiurnal internal tides originating from the SSR and PR.The results of this study show that internal tides and related mixing need to be considered in the analysis of water mass transformation in the Southern Ocean.展开更多
利用M IT gcm模式和最优插值法搭建的同化平台对热带太平洋赤道附近的海表温度SST数据进行了数值同化处理。结果表明,同化处理有效兼顾了模式模拟值和观测值,纠正了模式模拟值出现的误差,数值同化结果更接近于观测值。该同化平台能够更...利用M IT gcm模式和最优插值法搭建的同化平台对热带太平洋赤道附近的海表温度SST数据进行了数值同化处理。结果表明,同化处理有效兼顾了模式模拟值和观测值,纠正了模式模拟值出现的误差,数值同化结果更接近于观测值。该同化平台能够更好地反映出SST的分布特征,该同化方法可以有效地对海表数据进行数值预报。展开更多
基金This work was supported by the National Key R&D Program of China(Grant No.2016YFC1402705)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-DQC010)+1 种基金the National Natural Science Foundation of China(Grant Nos.41876012 and 41861144015)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42000000)。
文摘A regional Arctic Ocean configuration of the Massachusetts Institute of Technology General Circulation Model(MITgcm)is applied to simulate the Arctic sea ice from 1991 to 2012.The simulations are evaluated by comparing them with observations from different sources.The results show that MITgcm can reproduce the interannual and seasonal variability of the sea-ice extent,but underestimates the trend in sea-ice extent,especially in September.The ice concentration and thickness distributions are comparable to those from the observations,with most deviations within the observational uncertainties and less than 0.5 m,respectively.The simulated sea-ice extents are better correlated with observations in September,with a correlation coefficient of 0.95,than in March,with a correlation coefficient of 0.83.However,the distributions of sea-ice concentration are better simulated in March,with higher pattern correlation coefficients(0.98)than in September.When the model underestimates the atmospheric influence on the sea-ice evolution in March,deviations in the sea-ice concentration arise at the ice edges and are higher than those in September.In contrast,when the model underestimates the oceanic boundaries’influence on the September sea-ice evolution,disagreements in the distribution of the sea-ice concentration and its trend are found over most marginal seas in the Arctic Ocean.The uncertainties of the model,whereby it fails to incorporate the atmospheric information in March and oceanic information in September,contribute to varying model errors with the seasons.
基金The Doctor Foundation of Hebei Normal University of Science and Technology under contract No.2024YB039the Fundamental Research Funds for the Provincial Universities of Hebei under contract Nos 2023JK07 and 2022JK03+3 种基金the Major Science and Technology Support Project of Hebei Province under contract No.242S3301Zthe Fujian Provincial Natural Science Foundation of China under contract No.2021J05172the National Natural Science Foundation of China under contract No.42176244the CAS Key Deployment Project of Centre for Ocean Mega-Research of Science under contract No.COMS2020Q07.
文摘We use a high-resolution numerical simulation to analyze the generation and evolution of semidiurnal internal tides in the Weddell-Scotia Confluence.Our results indicate that two ridges near the Antarctic Peninsula,the South Scotia Ridge(SSR)and the Philip Ridge(PR),are energetic sources of semidiurnal internal tides.The strongest semidiurnal barotropic to baroclinic energy conversion occurs around the crest of the SSR,reaching 0.3 W/m^(2).The depthintegrated,tidally averaged semidiurnal internal tide energy fluxes that radiated from the SSR reach about 2 kW/m.The northward semidiurnal internal tide energy fluxes entering the Scotia Sea are stronger than the southward energy fluxes entering the Powell Basin.For the SSR region between the South Orkney Plateau and Elephant Island,the areaintegrated barotropic to baroclinic conversion rate is 0.71 GW,of which 0.56 GW(79%)dissipates locally.The dissipation of internal tides occurs mainly in water depths of less than 1000 m.The dissipation rate over the SSR is as high as 10−7 W/kg.The energy fluxes create an anticlockwise gyre between the SSR and PR.The horizontal kinetic energy and available potential energy oscillate sinusoidally with peaks occurring at quarter-wavelength intervals.This energy pattern suggests the formation of standing waves due to interference between the semidiurnal internal tides originating from the SSR and PR.The results of this study show that internal tides and related mixing need to be considered in the analysis of water mass transformation in the Southern Ocean.
文摘利用M IT gcm模式和最优插值法搭建的同化平台对热带太平洋赤道附近的海表温度SST数据进行了数值同化处理。结果表明,同化处理有效兼顾了模式模拟值和观测值,纠正了模式模拟值出现的误差,数值同化结果更接近于观测值。该同化平台能够更好地反映出SST的分布特征,该同化方法可以有效地对海表数据进行数值预报。