Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulner...Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access,exfiltrate data,and enable long-term surveillance.Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging.This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework,a widely adopted standard for modeling adversarial behavior.Through this mapping,we categorize real-world attack vectors and better understand how such attacks operate across the cyber-kill chain.To support threat detection efforts,we propose an Active Learning-based method to efficiently label the Pegasus spyware dataset in alignment with the MITRE ATT&CK framework.This approach reduces the effort of manually annotating data while improving the quality of the labeled data,which is essential to train robust cybersecurity models.In addition,our analysis highlights the structured execution paths of zero-click attacks and reveals gaps in current defense strategies.The findings emphasize the importance of forward-looking strategies such as continuous surveillance,dynamic threat profiling,and security education.By bridging zero-click attack analysis with the MITRE ATT&CK framework and leveraging machine learning for dataset annotation,this work provides a foundation for more accurate threat detection and the development of more resilient and structured cybersecurity frameworks.展开更多
The dynamic,heterogeneous nature of Edge computing in the Internet of Things(Edge-IoT)and Industrial IoT(IIoT)networks brings unique and evolving cybersecurity challenges.This study maps cyber threats in Edge-IoT/IIoT...The dynamic,heterogeneous nature of Edge computing in the Internet of Things(Edge-IoT)and Industrial IoT(IIoT)networks brings unique and evolving cybersecurity challenges.This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK)framework by MITRE and introduces a lightweight,data-driven scoring model that enables rapid identification and prioritization of attacks.Inspired by the Factor Analysis of Information Risk model,our proposed scoring model integrates four key metrics:Common Vulnerability Scoring System(CVSS)-based severity scoring,Cyber Kill Chain–based difficulty estimation,Deep Neural Networks-driven detection scoring,and frequency analysis based on dataset prevalence.By aggregating these indicators,the model generates comprehensive risk profiles,facilitating actionable prioritization of threats.Robustness and stability of the scoring model are validated through non-parametric correlation analysis using Spearman’s and Kendall’s rank correlation coefficients,demonstrating consistent performance across diverse scenarios.The approach culminates in a prioritized attack ranking that provides actionable guidance for risk mitigation and resource allocation in Edge-IoT/IIoT security operations.By leveraging real-world data to align MITRE ATT&CK techniques with CVSS metrics,the framework offers a standardized and practically applicable solution for consistent threat assessment in operational settings.The proposed lightweight scoring model delivers rapid and reliable results under dynamic cyber conditions,facilitating timely identification of attack scenarios and prioritization of response strategies.Our systematic integration of established taxonomies with data-driven indicators strengthens practical risk management and supports strategic planning in next-generation IoT deployments.Ultimately,this work advances adaptive threat modeling for Edge/IIoT ecosystems and establishes a robust foundation for evidence-based prioritization in emerging cyber-physical infrastructures.展开更多
Digital integration within healthcare systems exacerbates their vulnerability to sophisticated ransomware threats, leading to severe operational disruptions and data breaches. Current defenses are typically categorize...Digital integration within healthcare systems exacerbates their vulnerability to sophisticated ransomware threats, leading to severe operational disruptions and data breaches. Current defenses are typically categorized into active and passive measures that struggle to achieve comprehensive threat mitigation and often lack real-time response effectiveness. This paper presents an innovative ransomware defense system, ERAD, designed for healthcare environments that apply the MITRE ATT&CK Matrix to coordinate dynamic, stage-specific countermeasures throughout the ransomware attack lifecycle. By systematically identifying and addressing threats based on indicators of compromise (IOCs), the proposed system proactively disrupts the attack chain before serious damage occurs. Validation is provided through a detailed analysis of a system deployment against LockBit 3.0 ransomware, illustrating significant enhancements in mitigating the impact of the attack, reducing the cost of recovery, and strengthening the cybersecurity framework of healthcare organizations, but also applicable to other non-health sectors of the business world.展开更多
Recently,with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic,the possibility of cyberattacks through endpoints has increased.Numerous endpoint devices are managed meticu...Recently,with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic,the possibility of cyberattacks through endpoints has increased.Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats.In particular,because telecommuting,telemedicine,and teleeducation are implemented in uncontrolled environments,attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information,and reports of endpoint attacks have been increasing considerably.Advanced persistent threats(APTs)using various novel variant malicious codes are a form of a sophisticated attack.However,conventional commercial antivirus and anti-malware systems that use signature-based attack detectionmethods cannot satisfactorily respond to such attacks.In this paper,we propose a method that expands the detection coverage inAPT attack environments.In this model,an open-source threat detector and log collector are used synergistically to improve threat detection performance.Extending the scope of attack log collection through interworking between highly accessible open-source tools can efficiently increase the detection coverage of tactics and techniques used to deal with APT attacks,as defined by MITRE Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK).We implemented an attack environment using an APT attack scenario emulator called Carbanak and analyzed the detection coverage of Google Rapid Response(GRR),an open-source threat detection tool,and Graylog,an open-source log collector.The proposed method expanded the detection coverage against MITRE ATT&CK by approximately 11%compared with that conventional methods.展开更多
文摘Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access,exfiltrate data,and enable long-term surveillance.Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging.This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework,a widely adopted standard for modeling adversarial behavior.Through this mapping,we categorize real-world attack vectors and better understand how such attacks operate across the cyber-kill chain.To support threat detection efforts,we propose an Active Learning-based method to efficiently label the Pegasus spyware dataset in alignment with the MITRE ATT&CK framework.This approach reduces the effort of manually annotating data while improving the quality of the labeled data,which is essential to train robust cybersecurity models.In addition,our analysis highlights the structured execution paths of zero-click attacks and reveals gaps in current defense strategies.The findings emphasize the importance of forward-looking strategies such as continuous surveillance,dynamic threat profiling,and security education.By bridging zero-click attack analysis with the MITRE ATT&CK framework and leveraging machine learning for dataset annotation,this work provides a foundation for more accurate threat detection and the development of more resilient and structured cybersecurity frameworks.
基金supported by the“Regional Innovation System&Education(RISE)”through the Seoul RISE Center,funded by the Ministry of Education(MOE)and the Seoul Metropolitan Government(2025-RISE-01-018-05)supported by Quad Miners Corp。
文摘The dynamic,heterogeneous nature of Edge computing in the Internet of Things(Edge-IoT)and Industrial IoT(IIoT)networks brings unique and evolving cybersecurity challenges.This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK)framework by MITRE and introduces a lightweight,data-driven scoring model that enables rapid identification and prioritization of attacks.Inspired by the Factor Analysis of Information Risk model,our proposed scoring model integrates four key metrics:Common Vulnerability Scoring System(CVSS)-based severity scoring,Cyber Kill Chain–based difficulty estimation,Deep Neural Networks-driven detection scoring,and frequency analysis based on dataset prevalence.By aggregating these indicators,the model generates comprehensive risk profiles,facilitating actionable prioritization of threats.Robustness and stability of the scoring model are validated through non-parametric correlation analysis using Spearman’s and Kendall’s rank correlation coefficients,demonstrating consistent performance across diverse scenarios.The approach culminates in a prioritized attack ranking that provides actionable guidance for risk mitigation and resource allocation in Edge-IoT/IIoT security operations.By leveraging real-world data to align MITRE ATT&CK techniques with CVSS metrics,the framework offers a standardized and practically applicable solution for consistent threat assessment in operational settings.The proposed lightweight scoring model delivers rapid and reliable results under dynamic cyber conditions,facilitating timely identification of attack scenarios and prioritization of response strategies.Our systematic integration of established taxonomies with data-driven indicators strengthens practical risk management and supports strategic planning in next-generation IoT deployments.Ultimately,this work advances adaptive threat modeling for Edge/IIoT ecosystems and establishes a robust foundation for evidence-based prioritization in emerging cyber-physical infrastructures.
文摘Digital integration within healthcare systems exacerbates their vulnerability to sophisticated ransomware threats, leading to severe operational disruptions and data breaches. Current defenses are typically categorized into active and passive measures that struggle to achieve comprehensive threat mitigation and often lack real-time response effectiveness. This paper presents an innovative ransomware defense system, ERAD, designed for healthcare environments that apply the MITRE ATT&CK Matrix to coordinate dynamic, stage-specific countermeasures throughout the ransomware attack lifecycle. By systematically identifying and addressing threats based on indicators of compromise (IOCs), the proposed system proactively disrupts the attack chain before serious damage occurs. Validation is provided through a detailed analysis of a system deployment against LockBit 3.0 ransomware, illustrating significant enhancements in mitigating the impact of the attack, reducing the cost of recovery, and strengthening the cybersecurity framework of healthcare organizations, but also applicable to other non-health sectors of the business world.
基金This study is the result of a commissioned research project supported by the affiliated institute of ETRI(No.2021-026)partially supported by the NationalResearch Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1F1A1061107)+2 种基金the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean government(MOTIE)(P0008703,The Competency Development Program for Industry Specialist)the MSIT under the ICAN(ICT Challenge and Advanced Network of HRD)program[grant number IITP-2022-RS-2022-00156310]supervised by the Institute of Information&Communication Technology Planning and Evaluation(IITP).
文摘Recently,with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic,the possibility of cyberattacks through endpoints has increased.Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats.In particular,because telecommuting,telemedicine,and teleeducation are implemented in uncontrolled environments,attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information,and reports of endpoint attacks have been increasing considerably.Advanced persistent threats(APTs)using various novel variant malicious codes are a form of a sophisticated attack.However,conventional commercial antivirus and anti-malware systems that use signature-based attack detectionmethods cannot satisfactorily respond to such attacks.In this paper,we propose a method that expands the detection coverage inAPT attack environments.In this model,an open-source threat detector and log collector are used synergistically to improve threat detection performance.Extending the scope of attack log collection through interworking between highly accessible open-source tools can efficiently increase the detection coverage of tactics and techniques used to deal with APT attacks,as defined by MITRE Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK).We implemented an attack environment using an APT attack scenario emulator called Carbanak and analyzed the detection coverage of Google Rapid Response(GRR),an open-source threat detection tool,and Graylog,an open-source log collector.The proposed method expanded the detection coverage against MITRE ATT&CK by approximately 11%compared with that conventional methods.