As smart contracts,represented by Solidity,become deeply integrated into the manufacturing industry,blockchain-based Digital Twins(DT)has gained momentum in recent years.Most of the blockchain infrastructures in wides...As smart contracts,represented by Solidity,become deeply integrated into the manufacturing industry,blockchain-based Digital Twins(DT)has gained momentum in recent years.Most of the blockchain infrastructures in widespread use today are based on the Proof-of-Work(PoW)mechanism,and the process of creating blocks is known as“mining”.Mining becomes increasingly difficult as the blockchain grows in size and the number of on-chain business systems increases.To lower the threshold of participation in the mining process,“mining pools”have been created.Miners can cooperate and share the mining rewards according to the hashrate they contributed to the pool.Stratum is the most widely used communication protocol between miners and mining pools.Its security is essential for the participants.In this paper,we propose two novel Man-In-The-Middle(MITM)attack schemes against Stratum,which allow attackers to steal miners'hashrate to any mining pool using hijacked TCP connections.Compared with existing attacks,our work is more secretive,more suitable for the real-world environment,and more harmful.The Proof-of-Concept(PoC)shows that our schemes work perfectly on most mining softwares and pools.Furthermore,we present a lightweight AI-driven approach based on protocol-level feature analysis to detect Stratum MITM for blockchain-based DTs.Its detection model consists of three layers:feature extraction layer,vectorization layer,and detection layer.Experiments prove that our detection approach can effectively detect Stratum MITM traffic with 98%accuracy.Our work alerts the communities and provides possible mitigation against these more hidden and profitable attack schemes.展开更多
隐蔽性强及攻击方式灵活的中间人(Man-in-the-Middle Attack,MITM)攻击是当前物联网(Internet of Things,IoT)智能家居安全面临的最大安全隐患之一.从攻击与防御两个角度提出了基于上下文感知融合的物联网设备配对模型和基于熵的异构物...隐蔽性强及攻击方式灵活的中间人(Man-in-the-Middle Attack,MITM)攻击是当前物联网(Internet of Things,IoT)智能家居安全面临的最大安全隐患之一.从攻击与防御两个角度提出了基于上下文感知融合的物联网设备配对模型和基于熵的异构物联设备指纹生成机制,以对抗型思维并行开展监测与防御方案研究,实现了对隐藏安全威胁的感知与过滤,通过相似度阈值分析测试与评估模型的建立完成了设备安全性验证,具有较好的效果与优势.展开更多
To secure web applications from Man-In-The-Middle(MITM)and phishing attacks is a challenging task nowadays.For this purpose,authen-tication protocol plays a vital role in web communication which securely transfers dat...To secure web applications from Man-In-The-Middle(MITM)and phishing attacks is a challenging task nowadays.For this purpose,authen-tication protocol plays a vital role in web communication which securely transfers data from one party to another.This authentication works via OpenID,Kerberos,password authentication protocols,etc.However,there are still some limitations present in the reported security protocols.In this paper,the presented anticipated strategy secures both Web-based attacks by leveraging encoded emails and a novel password form pattern method.The proposed OpenID-based encrypted Email’s Authentication,Authorization,and Accounting(EAAA)protocol ensure security by relying on the email authenticity and a Special Secret Encrypted Alphanumeric String(SSEAS).This string is deployed on both the relying party and the email server,which is unique and trustworthy.The first authentication,OpenID Uniform Resource Locator(URL)identity,is performed on the identity provider side.A second authentication is carried out by the hidden Email’s server side and receives a third authentication link.This Email’s third SSEAS authentication link manages on the relying party(RP).Compared to existing cryptographic single sign-on protocols,the EAAA protocol ensures that an OpenID URL’s identity is secured from MITM and phishing attacks.This study manages two attacks such as MITM and phishing attacks and gives 339 ms response time which is higher than the already reported methods,such as Single Sign-On(SSO)and OpenID.The experimental sites were examined by 72 information technology(IT)specialists,who found that 88.89%of respondents successfully validated the user authorization provided to them via Email.The proposed EAAA protocol minimizes the higher-level risk of MITM and phishing attacks in an OpenID-based atmosphere.展开更多
We investigate the lightweight block cipher KATAN family which consists of three variants with 32, 48 and 64-bit block sizes, called KATAN32, KATAN48 and KATAN64 respectively. However, three variants all have the same...We investigate the lightweight block cipher KATAN family which consists of three variants with 32, 48 and 64-bit block sizes, called KATAN32, KATAN48 and KATAN64 respectively. However, three variants all have the same key length of 80 bits. On the basis of the bit-oriented faulty model and the differential analysis principle, we describe the attack that combines differential fault attack with the meet-in-the-middle (MITM) attack on the KATAN32. More precisely, inducing a fault at a bit, we can recover some linear differential fault equations on the key bits. During solving equations, without the help of computer, we need only algebraic deduction to obtain relations of some key bits. The complexity in this process is neglectable. The secret key of the full cipher can be recovered faster than exhaustive search for all three block sizes in the KATAN family. Our result describes that KATAN32 is vulnerable.展开更多
The TNC IF-T Protocol Binding to TLS(TIPBT) is specified by Trusted Computing Group(TCG) for TNC assessment exchanges.However,the TIPBT cannot be analysed by current Strand Space Model(SSM) because of the different re...The TNC IF-T Protocol Binding to TLS(TIPBT) is specified by Trusted Computing Group(TCG) for TNC assessment exchanges.However,the TIPBT cannot be analysed by current Strand Space Model(SSM) because of the different requirements from the traditional security protocols.In order to solve this problem,first,we give an extension of the SSM and point out the TIPBT cannot prevent Man-in-the-Middle(MITM) attacks in some cases based on the extended SSM.Then,we improve the TIPBT and show that the improved TIPBT can resist MITM attacks in the extended SSM.展开更多
This paper aims at analyzing the security issues that lie in the application layer (AL) protocols when users connect to the Internet via a wireless local area network (WLAN) through an access point. When adversaries l...This paper aims at analyzing the security issues that lie in the application layer (AL) protocols when users connect to the Internet via a wireless local area network (WLAN) through an access point. When adversaries launch deauthentication flood attacks cutting users' connection, the connection managers will automatically research the last access point's extended service set identifier (ESSID) and then re-establish connection. However, such re-connection can lead the users to a fake access point with the same ESSID set by attackers. As the attackers hide behind users' access points, they can pass AL's authentication and security schemes, e.g. secure socket layer (SSL). We have proved that they can even spy on users' account details, passwords, data and privacy.展开更多
文摘As smart contracts,represented by Solidity,become deeply integrated into the manufacturing industry,blockchain-based Digital Twins(DT)has gained momentum in recent years.Most of the blockchain infrastructures in widespread use today are based on the Proof-of-Work(PoW)mechanism,and the process of creating blocks is known as“mining”.Mining becomes increasingly difficult as the blockchain grows in size and the number of on-chain business systems increases.To lower the threshold of participation in the mining process,“mining pools”have been created.Miners can cooperate and share the mining rewards according to the hashrate they contributed to the pool.Stratum is the most widely used communication protocol between miners and mining pools.Its security is essential for the participants.In this paper,we propose two novel Man-In-The-Middle(MITM)attack schemes against Stratum,which allow attackers to steal miners'hashrate to any mining pool using hijacked TCP connections.Compared with existing attacks,our work is more secretive,more suitable for the real-world environment,and more harmful.The Proof-of-Concept(PoC)shows that our schemes work perfectly on most mining softwares and pools.Furthermore,we present a lightweight AI-driven approach based on protocol-level feature analysis to detect Stratum MITM for blockchain-based DTs.Its detection model consists of three layers:feature extraction layer,vectorization layer,and detection layer.Experiments prove that our detection approach can effectively detect Stratum MITM traffic with 98%accuracy.Our work alerts the communities and provides possible mitigation against these more hidden and profitable attack schemes.
文摘隐蔽性强及攻击方式灵活的中间人(Man-in-the-Middle Attack,MITM)攻击是当前物联网(Internet of Things,IoT)智能家居安全面临的最大安全隐患之一.从攻击与防御两个角度提出了基于上下文感知融合的物联网设备配对模型和基于熵的异构物联设备指纹生成机制,以对抗型思维并行开展监测与防御方案研究,实现了对隐藏安全威胁的感知与过滤,通过相似度阈值分析测试与评估模型的建立完成了设备安全性验证,具有较好的效果与优势.
文摘To secure web applications from Man-In-The-Middle(MITM)and phishing attacks is a challenging task nowadays.For this purpose,authen-tication protocol plays a vital role in web communication which securely transfers data from one party to another.This authentication works via OpenID,Kerberos,password authentication protocols,etc.However,there are still some limitations present in the reported security protocols.In this paper,the presented anticipated strategy secures both Web-based attacks by leveraging encoded emails and a novel password form pattern method.The proposed OpenID-based encrypted Email’s Authentication,Authorization,and Accounting(EAAA)protocol ensure security by relying on the email authenticity and a Special Secret Encrypted Alphanumeric String(SSEAS).This string is deployed on both the relying party and the email server,which is unique and trustworthy.The first authentication,OpenID Uniform Resource Locator(URL)identity,is performed on the identity provider side.A second authentication is carried out by the hidden Email’s server side and receives a third authentication link.This Email’s third SSEAS authentication link manages on the relying party(RP).Compared to existing cryptographic single sign-on protocols,the EAAA protocol ensures that an OpenID URL’s identity is secured from MITM and phishing attacks.This study manages two attacks such as MITM and phishing attacks and gives 339 ms response time which is higher than the already reported methods,such as Single Sign-On(SSO)and OpenID.The experimental sites were examined by 72 information technology(IT)specialists,who found that 88.89%of respondents successfully validated the user authorization provided to them via Email.The proposed EAAA protocol minimizes the higher-level risk of MITM and phishing attacks in an OpenID-based atmosphere.
基金the National Natural Science Foundation of China (No. 61272434)the Natural Science Foundation of Shandong Province (Nos. ZR2011FQ032 and ZR2012FM004)+1 种基金the Project of Shandong Province Higher Educational Science and Technology Program(No. J11LG33)the Project of Senior Visiting Scholar of Shandong Province
文摘We investigate the lightweight block cipher KATAN family which consists of three variants with 32, 48 and 64-bit block sizes, called KATAN32, KATAN48 and KATAN64 respectively. However, three variants all have the same key length of 80 bits. On the basis of the bit-oriented faulty model and the differential analysis principle, we describe the attack that combines differential fault attack with the meet-in-the-middle (MITM) attack on the KATAN32. More precisely, inducing a fault at a bit, we can recover some linear differential fault equations on the key bits. During solving equations, without the help of computer, we need only algebraic deduction to obtain relations of some key bits. The complexity in this process is neglectable. The secret key of the full cipher can be recovered faster than exhaustive search for all three block sizes in the KATAN family. Our result describes that KATAN32 is vulnerable.
基金supported in part by the National Natural Science Foundation of China under Grants No.60473072,No.60803151the Joint Fund of Natural Science Foundation of China with the Guangdong Provincial Government under Grant No.U0632004
文摘The TNC IF-T Protocol Binding to TLS(TIPBT) is specified by Trusted Computing Group(TCG) for TNC assessment exchanges.However,the TIPBT cannot be analysed by current Strand Space Model(SSM) because of the different requirements from the traditional security protocols.In order to solve this problem,first,we give an extension of the SSM and point out the TIPBT cannot prevent Man-in-the-Middle(MITM) attacks in some cases based on the extended SSM.Then,we improve the TIPBT and show that the improved TIPBT can resist MITM attacks in the extended SSM.
基金the National Science Council (No. NSC-99-2219-E-033-001)the Foundation of the Chung Yuan Christian University (1004) (No. CYCU-EECS.9801)
文摘This paper aims at analyzing the security issues that lie in the application layer (AL) protocols when users connect to the Internet via a wireless local area network (WLAN) through an access point. When adversaries launch deauthentication flood attacks cutting users' connection, the connection managers will automatically research the last access point's extended service set identifier (ESSID) and then re-establish connection. However, such re-connection can lead the users to a fake access point with the same ESSID set by attackers. As the attackers hide behind users' access points, they can pass AL's authentication and security schemes, e.g. secure socket layer (SSL). We have proved that they can even spy on users' account details, passwords, data and privacy.