期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的ECG心拍数据分类设计 被引量:2
1
作者 张俊飞 毕志升 +1 位作者 王静 吴小玲 《自动化与仪器仪表》 2019年第12期71-75,共5页
心脏疾病是威胁人类健康的最大病因,ECG信号的复杂性使得人工检测需要大量时间且容易误诊,因此基于心电图心拍数据实现计算机辅助ECG判断具有重要意义。提出基于QRS波群的心拍特征提取方法,以Pan-Tompkins算法实现QRS波群定位,设计心拍... 心脏疾病是威胁人类健康的最大病因,ECG信号的复杂性使得人工检测需要大量时间且容易误诊,因此基于心电图心拍数据实现计算机辅助ECG判断具有重要意义。提出基于QRS波群的心拍特征提取方法,以Pan-Tompkins算法实现QRS波群定位,设计心拍截取规则;构建一维卷积神经网络(CNN)模型,实现ECG四类心拍数据(正常搏动、左束支传导阻滞、右束支传导阻滞、室性早搏)的自动分类检测。为验证提出心拍截取方法的有效性,以MIT-BIH心率失常数据库45条数据进行验证,结果显示其灵敏度为99.1%、特异性为99.4%。采用截取的四类心拍数据验证一维CNN自动ECG分类检测模型的可用性,结果显示模型总体分类准确率为98.95%。 展开更多
关键词 ECG CNN Pan-Tompkins算法 mit-hib
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部