The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples that all have the same sum. It is considerably used to prove the strong NP-hardness of many sche...The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples that all have the same sum. It is considerably used to prove the strong NP-hardness of many scheduling problems. In this paper, we consider four optimization versions of the 3-partitioning problem, and then present four polynomial time approximation schemes for these problems.展开更多
Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer....Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.展开更多
A single-spin transition critical dynamics is used to investigate the three-dimensional kinetic Ising model on an anisotropic cubic lattice. We first derive the fundamental dynamical equations, and then linearize them...A single-spin transition critical dynamics is used to investigate the three-dimensional kinetic Ising model on an anisotropic cubic lattice. We first derive the fundamental dynamical equations, and then linearize them by a cutoff approximation. We obtain the approximate solutions of the local magnetization and equal-time pair correlation function in zero field. In which the axial-decoupling terms , and as higher infinitesimal quantity are ignored, where . We think that it is reasonable as the temperature of the system is very high. The result of what we obtain in this paper can go back to the one-dimensional Glauber's theory as long as .展开更多
In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schu...In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schur complements were computed exactly using a sparse direct solver.The robustness of the preconditioner comes at the price of this memory and time intensive computation that is the main bottleneck of the approach for tackling huge problems.In this work we investigate the use of sparse approximation of the dense local Schur complements.These approximations are computed using a partial incomplete LU factorization.Such a numerical calculation is the core of the multi-level incomplete factorization such as the one implemented in pARMS. The numerical and computing performance of the new numerical scheme is illustrated on a set of large 3D convection-diffusion problems;preliminary experiments on linear systems arising from structural mechanics are also reported.展开更多
In the scenario that a solid-fuel launch vehicle maneuvers in outer space at high angles of attack and sideslip for energy management,Approximate Analytical Solutions(AAS)for the threedimensional(3D)ascent flight stat...In the scenario that a solid-fuel launch vehicle maneuvers in outer space at high angles of attack and sideslip for energy management,Approximate Analytical Solutions(AAS)for the threedimensional(3D)ascent flight states are derived,which are the only solutions capable of considering time-varying Mass Flow Rate(MFR)at present.The uneven MFR makes the thrust vary nonlinearly and thus increases the difficulty of the problem greatly.The AAS are derived based on a 3D Generalized Ascent Dynamics Model(GADM)with a normalized mass as the independent variable.To simplify some highly nonlinear terms in the GADM,several approximate functions are introduced carefully,while the errors of the approximations relative to the original terms are regarded as minor perturbations.Notably,a finite series with positive and negative exponents,called Exponent-Symmetry Series(ESS),is proposed for function approximation to decrease the highest exponent in the AAS so as to reduce computer round-off errors.To calculate the ESS coefficients,a method of seeking the Optimal Interpolation Points(OIP)is proposed using the leastsquares-approximation theory.Due to the artful design of the approximations,the GADM can be decomposed into two analytically solvable subsystems by a perturbation method,and thus the AAS are obtained successfully.Finally,to help implement the AAS,two indirect methods for measuring the remaining mass and predicting the burnout time in flight are put forward using information from accelerometers.Simulation results verify the superiority of the AAS under the condition of time-varying MFR.展开更多
A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analo...A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.展开更多
文摘The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples that all have the same sum. It is considerably used to prove the strong NP-hardness of many scheduling problems. In this paper, we consider four optimization versions of the 3-partitioning problem, and then present four polynomial time approximation schemes for these problems.
文摘Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.
文摘A single-spin transition critical dynamics is used to investigate the three-dimensional kinetic Ising model on an anisotropic cubic lattice. We first derive the fundamental dynamical equations, and then linearize them by a cutoff approximation. We obtain the approximate solutions of the local magnetization and equal-time pair correlation function in zero field. In which the axial-decoupling terms , and as higher infinitesimal quantity are ignored, where . We think that it is reasonable as the temperature of the system is very high. The result of what we obtain in this paper can go back to the one-dimensional Glauber's theory as long as .
基金developed in the framework of the associated team PhyLeas(Study of parallel hybrid sparse linear solvers) funded by INRIA where the partners are INRIA,T.U.Brunswick and University of Minnesotasupported by the US Department of Energy under grant DE-FG-08ER25841 and by the Minnesota Supercomputer Institute.
文摘In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schur complements were computed exactly using a sparse direct solver.The robustness of the preconditioner comes at the price of this memory and time intensive computation that is the main bottleneck of the approach for tackling huge problems.In this work we investigate the use of sparse approximation of the dense local Schur complements.These approximations are computed using a partial incomplete LU factorization.Such a numerical calculation is the core of the multi-level incomplete factorization such as the one implemented in pARMS. The numerical and computing performance of the new numerical scheme is illustrated on a set of large 3D convection-diffusion problems;preliminary experiments on linear systems arising from structural mechanics are also reported.
基金Supported in part by National Natural Science Foundation of China(No.62003012)in part by the Young Tulents Support Program funded by Bcihang Univer-sity,China(No.YWF-23-L-702).
文摘In the scenario that a solid-fuel launch vehicle maneuvers in outer space at high angles of attack and sideslip for energy management,Approximate Analytical Solutions(AAS)for the threedimensional(3D)ascent flight states are derived,which are the only solutions capable of considering time-varying Mass Flow Rate(MFR)at present.The uneven MFR makes the thrust vary nonlinearly and thus increases the difficulty of the problem greatly.The AAS are derived based on a 3D Generalized Ascent Dynamics Model(GADM)with a normalized mass as the independent variable.To simplify some highly nonlinear terms in the GADM,several approximate functions are introduced carefully,while the errors of the approximations relative to the original terms are regarded as minor perturbations.Notably,a finite series with positive and negative exponents,called Exponent-Symmetry Series(ESS),is proposed for function approximation to decrease the highest exponent in the AAS so as to reduce computer round-off errors.To calculate the ESS coefficients,a method of seeking the Optimal Interpolation Points(OIP)is proposed using the leastsquares-approximation theory.Due to the artful design of the approximations,the GADM can be decomposed into two analytically solvable subsystems by a perturbation method,and thus the AAS are obtained successfully.Finally,to help implement the AAS,two indirect methods for measuring the remaining mass and predicting the burnout time in flight are put forward using information from accelerometers.Simulation results verify the superiority of the AAS under the condition of time-varying MFR.
基金supported by the National Natural Science Foundation of China (11172192)the College Postgraduate Research and Innovation Project of Jiangsu province (CXZZ12 0803)
文摘A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.