Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time ...Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems.展开更多
An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high m...An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update.展开更多
For the estimation of MIMO frequency selective channel, to mitigate the curse of dimensionality, a novel particle filtering scheme combined with time delay domain processing is proposed. In order to extract the time d...For the estimation of MIMO frequency selective channel, to mitigate the curse of dimensionality, a novel particle filtering scheme combined with time delay domain processing is proposed. In order to extract the time delay domain channel impulse response from the observed signal, the least-squares (LS) and minimum mean squared error (MMSE) criteria are discussed and the comparable performance of LS with MMSE for sample- spaced channel is revealed. Incorporated the dynamical channel model, gradient particle filtering is further introduced to improve the estimation performance. The robustness of the channel estimator for underestimated Doppler frequency and the effectiveness of the new estimation scheme are illustrated through simulation at last.展开更多
A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes a...A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity.展开更多
A channel estimation approach for orthogonal frequency division multiplexing with multiple-input and multipleoutput (MIMO-OFDM) in rapid fading channels is proposed. This approach combines the advantages of an optim...A channel estimation approach for orthogonal frequency division multiplexing with multiple-input and multipleoutput (MIMO-OFDM) in rapid fading channels is proposed. This approach combines the advantages of an optimal training sequence based least-square (OLS) algorithm and an expectation-maximization (EM) algorithm. The channels at the training blocks are estimated using an estimator based on the OLS algorithm. To compensate for the fast Rayleigh fading at the data blocks, a time domain based Gaussian interpolation filter is presented. Furthermore, an EM algorithm is introduced to improve the performance of channel estimation by a few iterations. Simulations show that this channel estimation approach can effectively track rapid channel variation.展开更多
A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion mo...A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.展开更多
The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed...The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed train( HST) environment,which leads to severe inter-carrier interference( ICI). Therefore,it is necessary to analyze the mechanism and influence factor of ICI in HST environment. In this paper, by using a non-stationary geometry-based stochastic model( GBSM) for MIMO HST channels, ICI is analyzed through investigating the channel coefficients and the carrier-to-interference power ratio( CIR). It is a fact that most of signal energy spreads on itself and its several neighborhood subcarriers. By investigating the amplitude of subcarriers, CIR is used to evaluate the ICI power level. The simulation results show that the biggest impact factor for the CIR is the multipath number L and the minimum impact factor K; when the train speed υR> 400 km / h,the normalized Doppler frequency offset ε > 0. 35,the CIR tends to zero,and the communication quality will be very poor at this condition. Finally,bit error rate( BER) is investigated by simulating a specific channel environment.展开更多
Two adaptive power and bit loading algorithms to maximize the throughput of MIMO-OFDM systems in frequency selective fading environment are proposed. The two algorithms allocate bit based on maximizing the overall thr...Two adaptive power and bit loading algorithms to maximize the throughput of MIMO-OFDM systems in frequency selective fading environment are proposed. The two algorithms allocate bit based on maximizing the overall throughput. One algorithm allocates power based on guaranteeing that the bit error rate (BER) of each sub-carrier and the total allocated power remain below a target BER threshold and a power threshold, respectively; another one allocates power based on guaranteeing that the mean BER of sub-carriers and the total allocated power remain below a target BER threshold and a power threshold, respectively. The simulation results show that the proposed algorithms can achieve faster throughput with lower computational complexity, which indicates that the proposed algorithms are effective when compared to some existing algorithms.展开更多
A channel estimation method is proposed for nmltiple-input multiple-output orthogonal frequency division muhiplexing (MIMO-OFDM) systems in time-varying fading channels. In this method, a decision-directed space-alt...A channel estimation method is proposed for nmltiple-input multiple-output orthogonal frequency division muhiplexing (MIMO-OFDM) systems in time-varying fading channels. In this method, a decision-directed space-alternating generalized expectation-maximization (SAGE) algorithm is introduced to the tracking of time-varying fading. In order to improve the estimation performance of the SAGE algorithm, a low rank approximation method is presented by using the signal subspace of the channel frequency autocorrelation matrix. The study reveals that this method can be incorporated into the SAGE algorithm. Furthermore, a modified fast sub- space tracking algorithm is given to adaptively estimate the signal subspace by utilizing training OFDM blocks sent at regular interval. Simulation results demonstrate the considerable benefits of the proposed channel estimation method.展开更多
This paper studies the problem of finding an effective subcarrier and power allocation strategy for downlink communication to multiple users in a MIMO-OFDM system with zero-forcing beamforming. The problem of minimizi...This paper studies the problem of finding an effective subcarrier and power allocation strategy for downlink communication to multiple users in a MIMO-OFDM system with zero-forcing beamforming. The problem of minimizing total power consumption with constraint on transmission rate for users is formulated. The problem of joint allocation is divided into two stages. In the first stage, the number of subcarriers that each user will get is determined based on the users’ average signal-to-noise ratio. In the second stage, it finds the best assignment of subcarriers to users. The optimal method is a complex combinatorial problem which can only be assuredly solved through an Exhaustive Search (ES). Since the ES method has high computational com-plexity, the normalized user selection algorithm and the simplified-normalized user selection algorithm are proposed to reduce the computational complexity. Simulation results show that the proposed low complexity algorithms offer better performance compared with an existing algorithm.展开更多
Combination of multiple-input multiple-output (MIMO) with orthogonal frequency division multiplexing (OFDM) has become a promising candidate for high performance wireless communications. However one major disadvantage...Combination of multiple-input multiple-output (MIMO) with orthogonal frequency division multiplexing (OFDM) has become a promising candidate for high performance wireless communications. However one major disadvantage of MIMO-OFDM systems lies in a prohibitively large peak-to-average power ratio (PAPR) of the transmitted signal on each antenna. In this paper we extend from SISO to MIMO systems a method based on allocating dedicated subcarriers for PAPR mitigation. These subcarriers are located on unused subcarriers of OFDM spectrum under the assumption they all fall under the power mask. This is originally implemented with a SOCP optimization algorithm applied before space time coding scheme. This jointly mitigates PAPR on each MIMO branch scheme. This approach does not degrade the bit-error-rate (BER) and the data bit rate and no side information (SI) transmission is required. Simulation results are presented in the IEEE 802.16 WiMAX standard contexts: an Alamouti space time code with two transmitted antennas and 256 OFDM subcarriers are considered where 56 of which are unused and allocated for PAPR reduction. PAPR gains up to 7dB are obtained depending on mean power increase limitation. Moreover, with a spectrum mask constraint, this method is standard compliant.展开更多
In this paper, we propose a new iterative detection and decoding scheme based on parallel interference cancel (PIC) for coded MIMO-OFDM systems. The performance of proposed receiver is improved through the joint PIC M...In this paper, we propose a new iterative detection and decoding scheme based on parallel interference cancel (PIC) for coded MIMO-OFDM systems. The performance of proposed receiver is improved through the joint PIC MIMO detection and iterative detection and decoding. Its performance is evaluated based on com-puter simulation. The simulation results indicate that the performance of the proposed receiver is greatly im-proved compared to coded MIMO-OFDM systems based on VBLAST detection scheme.展开更多
Channel estimation is very important for MIMO (Multiple Input Multiple Output) OFDM (Or-thogonal Frequency Division Multiplexing) systems, but its precision is reduced due to the noise in channel. In this letter, circ...Channel estimation is very important for MIMO (Multiple Input Multiple Output) OFDM (Or-thogonal Frequency Division Multiplexing) systems, but its precision is reduced due to the noise in channel. In this letter, circularly slipping window is introduced to resist the noise. It can be proved by simulation that with the same channel model, optimal slipping window length is the same with different vehicle speed. MSE (Minimum Square Error) of channel is greatly reduced with circularly slipping window, and performance of the system is closed to that with correct channel estimation.展开更多
This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Mult...This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)systems.However,theexact solution of the joint ML estimation is very complex since it needs a search over amulti-dimensional domain.Thus a simplified method is proposed to estimate the CFO and the PDPiteratively via the alternating-projection method which could induce the multidimensional searchproblem to a sequence of simple one-dimensional searches.Simulations show that the proposed algo-rithm is more accurate and robust than the existing algorithms.展开更多
Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multip...Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can...The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.展开更多
To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protectio...To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protection(UEP) based on joint source-channel coding(JSCC) according to H.264 video compression standard and RCPT channel coding.According to different thresholds of the average SNR of subchannels,the algorithm dynamically allocates the source coding parameters of original video data and the channel coding parameters of RCPT,which realizes UEP for the compressed video data of different importance.Through the bit and power allocation based on MQAM modulation and the subspace allocation based on beamforming technology for different subcarriers,an adaptive joint resource allocation making full use of space-frequency domain resources have been realized.The simulation results indicate that the algorithm improves the adaptability of video transmission systems in different wireless environments and the quality of video retrieval.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60272079), and the Hi-Tech Research and Development Program (863) of China (No. 2003AA123310)
文摘Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems.
文摘An enhanced extended Kalman filtering (E2KF) algorithm is proposed in this paper to cope with the joint multiple carrier frequency offsets (CFOs) and time-variant channel estimate for MIMO-OFDM systems over high mobility scenarios. It is unveiled that, the auto-regressive (AR) model not only provides an effective method to capture the dynamics of the channel parameters, which enables the prediction capability in the EKF algorithm, but also suggests an method to incorporate multiple successive pilot symbols for the improved measurement update.
文摘For the estimation of MIMO frequency selective channel, to mitigate the curse of dimensionality, a novel particle filtering scheme combined with time delay domain processing is proposed. In order to extract the time delay domain channel impulse response from the observed signal, the least-squares (LS) and minimum mean squared error (MMSE) criteria are discussed and the comparable performance of LS with MMSE for sample- spaced channel is revealed. Incorporated the dynamical channel model, gradient particle filtering is further introduced to improve the estimation performance. The robustness of the channel estimator for underestimated Doppler frequency and the effectiveness of the new estimation scheme are illustrated through simulation at last.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572157), and the National High- Technology Research and Development Program of China (Grant No.2003AA123310)
文摘A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity.
基金Project supported by the National High-Technology Research and Development Program of China (Grant No. 2003AA123- 31007), and the National Natural Science Foundation of China (Grant No.60272079)
文摘A channel estimation approach for orthogonal frequency division multiplexing with multiple-input and multipleoutput (MIMO-OFDM) in rapid fading channels is proposed. This approach combines the advantages of an optimal training sequence based least-square (OLS) algorithm and an expectation-maximization (EM) algorithm. The channels at the training blocks are estimated using an estimator based on the OLS algorithm. To compensate for the fast Rayleigh fading at the data blocks, a time domain based Gaussian interpolation filter is presented. Furthermore, an EM algorithm is introduced to improve the performance of channel estimation by a few iterations. Simulations show that this channel estimation approach can effectively track rapid channel variation.
基金Supported by the National Natural Science Foundation of China(61077022)
文摘A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.
基金National Natural Science Foundation of China(No.61271213)
文摘The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed train( HST) environment,which leads to severe inter-carrier interference( ICI). Therefore,it is necessary to analyze the mechanism and influence factor of ICI in HST environment. In this paper, by using a non-stationary geometry-based stochastic model( GBSM) for MIMO HST channels, ICI is analyzed through investigating the channel coefficients and the carrier-to-interference power ratio( CIR). It is a fact that most of signal energy spreads on itself and its several neighborhood subcarriers. By investigating the amplitude of subcarriers, CIR is used to evaluate the ICI power level. The simulation results show that the biggest impact factor for the CIR is the multipath number L and the minimum impact factor K; when the train speed υR> 400 km / h,the normalized Doppler frequency offset ε > 0. 35,the CIR tends to zero,and the communication quality will be very poor at this condition. Finally,bit error rate( BER) is investigated by simulating a specific channel environment.
基金the National Natural Science Foundation of China (60496313).
文摘Two adaptive power and bit loading algorithms to maximize the throughput of MIMO-OFDM systems in frequency selective fading environment are proposed. The two algorithms allocate bit based on maximizing the overall throughput. One algorithm allocates power based on guaranteeing that the bit error rate (BER) of each sub-carrier and the total allocated power remain below a target BER threshold and a power threshold, respectively; another one allocates power based on guaranteeing that the mean BER of sub-carriers and the total allocated power remain below a target BER threshold and a power threshold, respectively. The simulation results show that the proposed algorithms can achieve faster throughput with lower computational complexity, which indicates that the proposed algorithms are effective when compared to some existing algorithms.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60572157)the National High Technology Research and Development Program (863) (Grant No.2003AA12331007)
文摘A channel estimation method is proposed for nmltiple-input multiple-output orthogonal frequency division muhiplexing (MIMO-OFDM) systems in time-varying fading channels. In this method, a decision-directed space-alternating generalized expectation-maximization (SAGE) algorithm is introduced to the tracking of time-varying fading. In order to improve the estimation performance of the SAGE algorithm, a low rank approximation method is presented by using the signal subspace of the channel frequency autocorrelation matrix. The study reveals that this method can be incorporated into the SAGE algorithm. Furthermore, a modified fast sub- space tracking algorithm is given to adaptively estimate the signal subspace by utilizing training OFDM blocks sent at regular interval. Simulation results demonstrate the considerable benefits of the proposed channel estimation method.
文摘This paper studies the problem of finding an effective subcarrier and power allocation strategy for downlink communication to multiple users in a MIMO-OFDM system with zero-forcing beamforming. The problem of minimizing total power consumption with constraint on transmission rate for users is formulated. The problem of joint allocation is divided into two stages. In the first stage, the number of subcarriers that each user will get is determined based on the users’ average signal-to-noise ratio. In the second stage, it finds the best assignment of subcarriers to users. The optimal method is a complex combinatorial problem which can only be assuredly solved through an Exhaustive Search (ES). Since the ES method has high computational com-plexity, the normalized user selection algorithm and the simplified-normalized user selection algorithm are proposed to reduce the computational complexity. Simulation results show that the proposed low complexity algorithms offer better performance compared with an existing algorithm.
文摘Combination of multiple-input multiple-output (MIMO) with orthogonal frequency division multiplexing (OFDM) has become a promising candidate for high performance wireless communications. However one major disadvantage of MIMO-OFDM systems lies in a prohibitively large peak-to-average power ratio (PAPR) of the transmitted signal on each antenna. In this paper we extend from SISO to MIMO systems a method based on allocating dedicated subcarriers for PAPR mitigation. These subcarriers are located on unused subcarriers of OFDM spectrum under the assumption they all fall under the power mask. This is originally implemented with a SOCP optimization algorithm applied before space time coding scheme. This jointly mitigates PAPR on each MIMO branch scheme. This approach does not degrade the bit-error-rate (BER) and the data bit rate and no side information (SI) transmission is required. Simulation results are presented in the IEEE 802.16 WiMAX standard contexts: an Alamouti space time code with two transmitted antennas and 256 OFDM subcarriers are considered where 56 of which are unused and allocated for PAPR reduction. PAPR gains up to 7dB are obtained depending on mean power increase limitation. Moreover, with a spectrum mask constraint, this method is standard compliant.
文摘In this paper, we propose a new iterative detection and decoding scheme based on parallel interference cancel (PIC) for coded MIMO-OFDM systems. The performance of proposed receiver is improved through the joint PIC MIMO detection and iterative detection and decoding. Its performance is evaluated based on com-puter simulation. The simulation results indicate that the performance of the proposed receiver is greatly im-proved compared to coded MIMO-OFDM systems based on VBLAST detection scheme.
文摘Channel estimation is very important for MIMO (Multiple Input Multiple Output) OFDM (Or-thogonal Frequency Division Multiplexing) systems, but its precision is reduced due to the noise in channel. In this letter, circularly slipping window is introduced to resist the noise. It can be proved by simulation that with the same channel model, optimal slipping window length is the same with different vehicle speed. MSE (Minimum Square Error) of channel is greatly reduced with circularly slipping window, and performance of the system is closed to that with correct channel estimation.
基金the National Natural Science Foundation of China(No.60496311).
文摘This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)systems.However,theexact solution of the joint ML estimation is very complex since it needs a search over amulti-dimensional domain.Thus a simplified method is proposed to estimate the CFO and the PDPiteratively via the alternating-projection method which could induce the multidimensional searchproblem to a sequence of simple one-dimensional searches.Simulations show that the proposed algo-rithm is more accurate and robust than the existing algorithms.
基金supported by the National Natural Science Foundation of China under grants 62072229,U1936201,62071220,61976113joint project of China Mobile Research Institute&X-NET。
文摘Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金Hongguang Wu,Both authors contributed equally to this work and share first authorshipLing Dong,Both authors contributed equally to this work and share first authorship。
文摘The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
基金Sponsored by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 201149)the National Natural Science Foundation of China (Grant No. 61071104)
文摘To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protection(UEP) based on joint source-channel coding(JSCC) according to H.264 video compression standard and RCPT channel coding.According to different thresholds of the average SNR of subchannels,the algorithm dynamically allocates the source coding parameters of original video data and the channel coding parameters of RCPT,which realizes UEP for the compressed video data of different importance.Through the bit and power allocation based on MQAM modulation and the subspace allocation based on beamforming technology for different subcarriers,an adaptive joint resource allocation making full use of space-frequency domain resources have been realized.The simulation results indicate that the algorithm improves the adaptability of video transmission systems in different wireless environments and the quality of video retrieval.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.