Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multip...Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers.展开更多
In this paper,we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments.We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering envi...In this paper,we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments.We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering environments,so that most existing compressed sensing(CS)based techniques can harvest a very limited gain(if any)in reducing the channel estimation overhead.To address the problem,we propose the learning-based turbo message passing(LTMP)algorithm.Instead of exploiting the channel sparsity,LTMP is able to efficiently extract the channel feature via deep learning as well as to exploit the channel continuity in the frequency domain via block-wise linear modelling.More specifically,as a component of LTMP,we develop a multi-scale parallel dilated convolutional neural network(MPDCNN),which leverages frequency-space channel correlation in different scales for channel denoising.We evaluate the LTMP’s performance in MIMO-OFDM channels using the 3rd generation partnership project(3GPP)clustered delay line(CDL)channel models.Simulation results show that the proposed channel estimation method has more than 5 dB power gain than the existing algorithms when the normalized mean-square error of the channel estimation is-20 dB.The proposed algorithm also exhibits strong robustness in various environments.展开更多
An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
提出了一种适用于时间频率选择性衰落信道的MIMO-OFDM系统的组合信道估计方法。采用AR过程对信道进行建模,利用基于导频的低维Kalman滤波算法进行信道估计,并采用LS算法估计时变的信道衰减因子。Kalman滤波跟踪了信道的时域相关性,为了...提出了一种适用于时间频率选择性衰落信道的MIMO-OFDM系统的组合信道估计方法。采用AR过程对信道进行建模,利用基于导频的低维Kalman滤波算法进行信道估计,并采用LS算法估计时变的信道衰减因子。Kalman滤波跟踪了信道的时域相关性,为了同时跟踪信道的频域相关性,采用了一种基于MMSE(minimum mean square error)的合并器对Kalman滤波算法进行修正。仿真表明,提出的这种组合算法降低了传统的Kalman滤波结构的复杂度,能够跟踪信道的时频变化,改进了基于LS准则的信道估计算法,并且与复杂的高维Kalman滤波算法的信道估计性能相当。展开更多
该文针对闭环多用户MIMO-OFDM系统提出一种基于线性预测的低速率CSI(Channel State Information)反馈方法。根据相关带宽将OFDM子载波划分成多个子带,移动台对每个子带的CSI作线性预测,并对预测误差进行量化编码后反馈给基站;基站使用...该文针对闭环多用户MIMO-OFDM系统提出一种基于线性预测的低速率CSI(Channel State Information)反馈方法。根据相关带宽将OFDM子载波划分成多个子带,移动台对每个子带的CSI作线性预测,并对预测误差进行量化编码后反馈给基站;基站使用相同的线性预测滤波器将反馈来的预测误差恢复成CSI,然后在每个子带上通过迫零-波束赋形实现多用户空间复用。同时,该文还在采用注水定理分配发射功率的条件下,从理论上分析了下行链路信道容量。数值仿真结果显示,每个反馈数据的实部或虚部仅用1bit量化时,本方法仍能够以较高的精度恢复CSI。与目前3GPP LTE标准所采用的基于码书的反馈方案相比,该方法能够在反馈开销相同情况下,有效地抑制同信道干扰,大幅提高系统容量。展开更多
基金supported by the National Natural Science Foundation of China under grants 62072229,U1936201,62071220,61976113joint project of China Mobile Research Institute&X-NET。
文摘Dual-function communication radar systems use common Radio Frequency(RF)signals are used for both communication and detection.For better compatibility with existing communication systems,we adopt Multiple-Input Multiple-Output(MIMO)Orthogonal Frequency Division Multiplexing(OFDM)signals as integrated signals and investigate the estimation performance of MIMO-OFDM signals.First,we analyze the Cramer-Rao Lower Bound(CRLB)of parameter estimation.Then,the transmit powers over different subcarriers are optimized to achieve the best tradeoff between the transmission rate and the estimation performance.Finally,we propose a more accurate estimation method that uses Canonical Polyadic Decomposition(CPD)of the third-order tensor to obtain the parameter matrices.Due to the characteristic of the column structure of the parameter matrices,we only need to use DFT/IDFT to recover the parameters of multiple targets.The simulation results show that tensor-based estimation method can achieve a performance close to CRLB,and the estimation performance can be improved by optimizing the transmit powers.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1804800.
文摘In this paper,we focus on the channel estimation for multi-user MIMO-OFDM systems in rich scattering environments.We find that channel sparsity in the delay-angle domain is severely compromised in rich scattering environments,so that most existing compressed sensing(CS)based techniques can harvest a very limited gain(if any)in reducing the channel estimation overhead.To address the problem,we propose the learning-based turbo message passing(LTMP)algorithm.Instead of exploiting the channel sparsity,LTMP is able to efficiently extract the channel feature via deep learning as well as to exploit the channel continuity in the frequency domain via block-wise linear modelling.More specifically,as a component of LTMP,we develop a multi-scale parallel dilated convolutional neural network(MPDCNN),which leverages frequency-space channel correlation in different scales for channel denoising.We evaluate the LTMP’s performance in MIMO-OFDM channels using the 3rd generation partnership project(3GPP)clustered delay line(CDL)channel models.Simulation results show that the proposed channel estimation method has more than 5 dB power gain than the existing algorithms when the normalized mean-square error of the channel estimation is-20 dB.The proposed algorithm also exhibits strong robustness in various environments.
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
文摘提出了一种适用于时间频率选择性衰落信道的MIMO-OFDM系统的组合信道估计方法。采用AR过程对信道进行建模,利用基于导频的低维Kalman滤波算法进行信道估计,并采用LS算法估计时变的信道衰减因子。Kalman滤波跟踪了信道的时域相关性,为了同时跟踪信道的频域相关性,采用了一种基于MMSE(minimum mean square error)的合并器对Kalman滤波算法进行修正。仿真表明,提出的这种组合算法降低了传统的Kalman滤波结构的复杂度,能够跟踪信道的时频变化,改进了基于LS准则的信道估计算法,并且与复杂的高维Kalman滤波算法的信道估计性能相当。
文摘该文针对闭环多用户MIMO-OFDM系统提出一种基于线性预测的低速率CSI(Channel State Information)反馈方法。根据相关带宽将OFDM子载波划分成多个子带,移动台对每个子带的CSI作线性预测,并对预测误差进行量化编码后反馈给基站;基站使用相同的线性预测滤波器将反馈来的预测误差恢复成CSI,然后在每个子带上通过迫零-波束赋形实现多用户空间复用。同时,该文还在采用注水定理分配发射功率的条件下,从理论上分析了下行链路信道容量。数值仿真结果显示,每个反馈数据的实部或虚部仅用1bit量化时,本方法仍能够以较高的精度恢复CSI。与目前3GPP LTE标准所采用的基于码书的反馈方案相比,该方法能够在反馈开销相同情况下,有效地抑制同信道干扰,大幅提高系统容量。