Accurate estimationand real-time compensation for phase offset and Doppler shift are essential for coherent multi-input multi-output(MIMO)systems.Here,a spatial multiplexing MIMO scheme with non-coherent frequency-shi...Accurate estimationand real-time compensation for phase offset and Doppler shift are essential for coherent multi-input multi-output(MIMO)systems.Here,a spatial multiplexing MIMO scheme with non-coherent frequency-shift keying(FSK)detection is proposed.It is immune to random phase interference and Doppler shift while increasing capacity.It is valuable that the proposed spatial multiplexing MIMO based on energy detection(ED)is equivalent to a linear system,and there is no mutual interference caused by the product of simultaneous signals in square-law processing.The equivalent MIMO channel model is derived as a real matrix,which remains maximal multiplexing capacity and reduces the channel estimation complexity.Simulation results show that the proposed scheme has outstanding performance over Rician flat fading channel,and experimental system obtains four times the capacity through 4 antennas on both transmitter and receiver.展开更多
This paper reports on investigations into the performance of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uni-form linear...This paper reports on investigations into the performance of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uni-form linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is as-sumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering ob-jects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. The performance of bit error rate (BER), capacity and channel estimation for a MIMO system are evaluated for the two cases that the receiver is equipped with ULA or with UCA antennas.展开更多
基金the National Natural Science Foundation of China(61571149,61761014)the Guangxi Key Research and Development Plan(Guike AB18126030)。
文摘Accurate estimationand real-time compensation for phase offset and Doppler shift are essential for coherent multi-input multi-output(MIMO)systems.Here,a spatial multiplexing MIMO scheme with non-coherent frequency-shift keying(FSK)detection is proposed.It is immune to random phase interference and Doppler shift while increasing capacity.It is valuable that the proposed spatial multiplexing MIMO based on energy detection(ED)is equivalent to a linear system,and there is no mutual interference caused by the product of simultaneous signals in square-law processing.The equivalent MIMO channel model is derived as a real matrix,which remains maximal multiplexing capacity and reduces the channel estimation complexity.Simulation results show that the proposed scheme has outstanding performance over Rician flat fading channel,and experimental system obtains four times the capacity through 4 antennas on both transmitter and receiver.
文摘This paper reports on investigations into the performance of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uni-form linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is as-sumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering ob-jects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. The performance of bit error rate (BER), capacity and channel estimation for a MIMO system are evaluated for the two cases that the receiver is equipped with ULA or with UCA antennas.