期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于全局和局部标签相关性的MIMLSVM改进算法
1
作者 李村合 张振凯 《计算机系统应用》 2019年第4期131-138,共8页
多示例多标记学习是用多个示例来表示一个对象,同时该对象与多个类别标记相关联的新型机器学习框架.设计多示例多标记算法的一种方法是使用退化策略将其转化为多示例学习或者是多标记学习,最后退化为传统监督学习,然后使用某种算法进行... 多示例多标记学习是用多个示例来表示一个对象,同时该对象与多个类别标记相关联的新型机器学习框架.设计多示例多标记算法的一种方法是使用退化策略将其转化为多示例学习或者是多标记学习,最后退化为传统监督学习,然后使用某种算法进行训练和建模,但是在退化过程中会有信息丢失,从而影响到分类准确率.MIMLSVM算法是以多标记学习为桥梁,将多示例多标记学习问题退化为传统监督学习问题求解,但是该算法在退化过程中没有考虑标记之间的相关信息,本文利用一种既考虑到全局相关性又考虑到局部相关性的多标记算法GLOCAL来对MIMLSVM进行改进,实验结果显示,改进的算法取得了良好的分类效果. 展开更多
关键词 多示例多标记 局部性 全局性 退化 mimlsvm GLOCAL
在线阅读 下载PDF
基于概念权重向量的MIMLSVM改进算法
2
作者 环天 郝宁 牛强 《计算机科学》 CSCD 北大核心 2017年第12期48-51,63,共5页
针对多示例多标记学习算法MIMLSVM只从包层面构造聚类,而忽略了包内示例分布对分类造成影响这一不足,提出一种基于概念权重向量的MIMLSVM改进算法——I-MIMLSVM算法。首先从示例层面构造聚类,挖掘出示例中的潜在概念簇,运用R-PATTERN算... 针对多示例多标记学习算法MIMLSVM只从包层面构造聚类,而忽略了包内示例分布对分类造成影响这一不足,提出一种基于概念权重向量的MIMLSVM改进算法——I-MIMLSVM算法。首先从示例层面构造聚类,挖掘出示例中的潜在概念簇,运用R-PATTERN算法计算每个概念簇的概念权重;然后利用TF-IDF算法计算每个概念簇在各个示例包中的重要度;最后将示例包表示为概念权重向量,向量的每一维即为概念簇的概念权重与其在该包中的重要度的乘积。将该算法在包含2000幅图像的自然数据集上进行实验验证,结果表明改进的算法在分类性能上整体优于原算法,尤其在Hamming loss,Coverage和Average precision这3个测评指标上较为明显。 展开更多
关键词 mimlsvm 聚类 R-PATTERN TF-IDF
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部