期刊文献+
共找到2,961篇文章
< 1 2 149 >
每页显示 20 50 100
Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy
1
作者 Rui Song Feng Hao +2 位作者 Jie Yang Lifeng Yin Jian Shen 《Chinese Physics B》 2025年第5期517-522,共6页
Recently,charged solitons have been found in a two-dimensional CoCl_(2)/HOPG system,whose microscopic nature remains to be elusive.In this work,we investigate the charged solitons in monolayer CoCl_(2) using scanning ... Recently,charged solitons have been found in a two-dimensional CoCl_(2)/HOPG system,whose microscopic nature remains to be elusive.In this work,we investigate the charged solitons in monolayer CoCl_(2) using scanning tunneling microscopy(STM)and atomic force microscopy(AFM).Moreover,we study the electrical properties of the charged solitons at zero electric field by measuring local contact potential difference(LCPD)via Kelvin probe force microscopy(KPFM)using the Δf(V)method.The compensation voltage corresponding to the vertex of the parabola is obtained by fitting the quadratic relationship between Δf and sample bias.The results show that,without an external electric field,the solitons behave as negatively charged entities.Meanwhile,the LCPD mapping characterizes the spatial distribution of the potential at the charged solitons,which agrees well with those obtained from STM band bending measurements. 展开更多
关键词 scanning tunneling microscopy(STM) atomic force microscopy(AFM) Kelvin probe force microscopy(KPFM) cobalt dichloride
原文传递
Review of imaging buffers used in stochastic optical reconstruction microscopy
2
作者 Can Wang Zhe Sun Donghan Ma 《Chinese Chemical Letters》 2025年第9期56-63,共8页
Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and... Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and dark states,allowing for the precise localization of isolated emission patterns and the super-resolution reconstruction from millions of localized positions of single fluorophores.A critical factor influencing localization precision is the photo-switching behavior of fluorophores,which is affected by the imaging buffer.The imaging buffer typically comprises oxygen scavengers,photo-switching reagents,and refractive index regulators.Oxygen scavengers help prevent photobleaching,photo-switching reagents assist in facilitating the conversion of fluorophores,and refractive index regulators are used to adjust the refractive index of the solution.The synergistic interaction of these components promotes stable blinking of fluorophores,reduces irreversible photobleaching,and thereby ensures high-quality super-resolution imaging.This review provides a comprehensive overview of the essential compositions and functionalities of imaging buffers used in STORM,serving as a valuable resource for researchers seeking to select appropriate imaging buffers for their experiments. 展开更多
关键词 Single-molecule localization microscopy Stochastic optical reconstruction microscopy Photo-switching Photobleaching Imaging buffer
原文传递
Characteristics and differential diagnosis of common verrucous proliferative skin diseases under dermoscopy and reflectance confocal microscopy 被引量:1
3
作者 ZHOU Lu FU Yule +7 位作者 HUANG Jian TANG Zhen LU Jianyun TAN Lina WANG Dan ZENG Jinrong WANG Jia GAO Lihua 《中南大学学报(医学版)》 北大核心 2025年第3期358-365,共8页
Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often ... Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases. 展开更多
关键词 reflectance confocal microscopy DERMOSCOPY verrucous proliferation verrucous epidermal nevus seborrheic keratosis verruca plana verruca vulgaris nevus sebaceous
暂未订购
Fast full-color pathological imaging using Fourier ptychographic microscopy via closed-form model-based colorization 被引量:2
4
作者 Yanqi Chen Jiurun Chen +4 位作者 Zhiping Wang Yuting Gao Yonghong He Yishi Shi An Pan 《Advanced Photonics Nexus》 2025年第2期7-16,共10页
Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution fo... Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering. 展开更多
关键词 Fourier ptychographic microscopy color transfer dual-color-space constrained model
在线阅读 下载PDF
In-situ observation of nonmetallic inclusions in steel using confocal scanning laser microscopy:A review 被引量:1
5
作者 Ying Ren Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期975-991,共17页
The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are revi... The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions. 展开更多
关键词 INCLUSION STEEL in-situ observation confocal scanning laser microscopy
在线阅读 下载PDF
Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS_(2) in high-resolution transmission electron microscopy 被引量:1
6
作者 Yu Meng Shuya Wang +5 位作者 Xibiao Ren Han Xue Xuejun Yue Chuanhong Jin Shanggang Lin Fang Lin 《Chinese Physics B》 2025年第1期162-170,共9页
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co... High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability. 展开更多
关键词 aberration measurement high-resolution transmission electron microscopy feature-extraction networks exit-wave reconstruction monolayer MoS_(2)
原文传递
A promising approach for quantifying focal stroke modeling and assessing stroke progression:optical resolution photoacoustic microscopy photothrombosis
7
作者 Xiao Liang Xingping Quan +6 位作者 Xiaorui Geng Yujing Huang Yonghua Zhao Lei Xi Zhen Yuan Ping Wang Bin Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期2029-2037,共9页
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me... To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes. 展开更多
关键词 AGE-DEPENDENT cerebral cortex ischemic stroke mouse model optical coherence tomography angiography photoacoustic microscopy PHOTOTHROMBOSIS vascular imaging
暂未订购
Adaptable deep learning for holographic microscopy:a case study on tissue type and system variability in label-free histopathology
8
作者 Jiseong Barg Chanseok Lee +1 位作者 Chunghyeong Lee Mooseok Jang 《Advanced Photonics Nexus》 2025年第2期39-53,共15页
Holographic microscopy has emerged as a vital tool in biomedicine,enabling visualization of microscopic morphological features of tissues and cells in a label-free manner.Recently,deep learning(DL)-based image reconst... Holographic microscopy has emerged as a vital tool in biomedicine,enabling visualization of microscopic morphological features of tissues and cells in a label-free manner.Recently,deep learning(DL)-based image reconstruction models have demonstrated state-of-the-art performance in holographic image reconstruction.However,their utility in practice is still severely limited,as conventional training schemes could not properly handle out-of-distribution data.Here,we leverage backpropagation operation and reparameterization of the forward propagator to enable an adaptable image reconstruction model for histopathologic inspection.Only given with a training dataset of rectum tissue images captured from a single imaging configuration,our scheme consistently shows high reconstruction performance even with the input hologram of diverse tissue types at different pathological states captured under various imaging configurations.Using the proposed adaptation technique,we show that the diagnostic features of cancerous colorectal tissues,such as dirty necrosis,captured with 5×magnification and a numerical aperture(NA)of 0.1,can be reconstructed with high accuracy,whereas a given training dataset is strictly confined to normal rectum tissues acquired under the imaging configuration of 20×magnification and an NA of 0.4.Our results suggest that the DL-based image reconstruction approaches,with sophisticated adaptation techniques,could offer an extensively generalizable solution for inverse mapping problems in imaging. 展开更多
关键词 holographic microscopy deep learning HISTOPATHOLOGY ADAPTABILITY GENERALIZATION phase imaging
在线阅读 下载PDF
Insight into pericytes in glioblastoma angiogenesis:In vivo tracking by two-photon microscopy and proteomic profiling
9
作者 Qinghong Wang Chengyan Ma +3 位作者 Xinpei Wang Mengyuan Li Xingjiu Yang Ran Gao 《Animal Models and Experimental Medicine》 2025年第9期1688-1699,共12页
Background:Glioblastoma(GBM)is a highly aggressive brain tumor characterized by aberrant angiogenesis and an immunosuppressive microenvironment.Pericytes are aberrantly recruited but their spatiotemporal roles and mol... Background:Glioblastoma(GBM)is a highly aggressive brain tumor characterized by aberrant angiogenesis and an immunosuppressive microenvironment.Pericytes are aberrantly recruited but their spatiotemporal roles and molecular changes remain unclear.This study investigated platelet-derived growth factor receptor beta-positive(Pdgfrb+)pericyte dynamics and reprogramming in GBM vasculature.Methods:We generated GL261-Luc and GL261-CFP glioblastoma cells via lentiviral transduction and established two transgenic models.(1)For pericyte labeling,Ai14 reporter mice was crossed with PDGFRβ-P2A-CreERT2mice for td Tomato-specific lineage tracing(PT mice).(2)For conditional ablation,we generated inducible Pdgfrb-expressing cell ablation models(PT mice was crossed with ROSA-DTA mice).An intravital imaging platform(FITC-dextran/CFP/td Tomato+two-photon microscopy)tracked pericytes,vessels,and tumor cells,while FACSsorted Pdgfrb+cells from GBM and normal brain were analyzed by LC-MS/MS proteomics.Results:Cre-mediated ablation of Pdgfrb-expressing cells revealed stage-dependent effects on GBM growth:early ablation inhibited progression while late ablation promoted it.Pericytes undergo dual spatial reorganization in GBM:regional enrichment with pre-sprouting accumulation at the tumor-brain interface,and focal positioning with preferential localization at vascular branch points.Concurrently,GBM vasculature displayed simplified branching,dilation,and pericyte remodeling(shorter processes,higher density).Proteomics revealed 1426 altered proteins,with upregulated proliferation pathways(e.g.,matrix metallopeptidase 14[Mmp14],lysyl oxidase like 2[Loxl2])and downregulated homeostasis functions(e.g.,transforming growth factor beta 1[Tgfb1]),validated by scRNA-seq in human GBM.Conclusions:This study demonstrates that during early GBM progression,pericytes actively drive tumor angiogenesis through molecular reprogramming toward proliferative and pro-angiogenic phenotypes,with the integrated imaging-proteomics framework revealing potential therapeutic targets for disrupting pericyte-mediated vascular remodeling. 展开更多
关键词 ANGIOGENESIS GLIOBLASTOMA PERICYTES tumor microenvironment two-photon microscopy
暂未订购
Modeling and resolution analysis of microcylinder-assisted microscopy in reflection and transmission modes
10
作者 Felix Rosenthal Tobias Pahl +4 位作者 Lucie Hüser Michael Diehl Tim Eckhardt Sebastian Hagemeier Peter Lehmann 《Advanced Photonics Nexus》 2025年第4期22-33,共12页
Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral r... Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM. 展开更多
关键词 microsphere-assisted microscopy resolution enhancement resolution limit electromagnetic modeling SUPER-RESOLUTION whispering gallery mode
在线阅读 下载PDF
Probing Interfacial Nanostructures of Electrochemical Energy Storage Systems by In-Situ Transmission Electron Microscopy
11
作者 Guisheng Liang Chang Zhang +10 位作者 Liting Yang Yihao Liu Minmin Liu Xuhui Xiong Chendi Yang Xiaowei Lv Wenbin You Ke Pei Chuan-Jian Zhong Han-Wen Cheng Renchao Che 《Nano-Micro Letters》 2025年第10期388-416,共29页
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth unders... The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems. 展开更多
关键词 In-situ transmission electron microscopy Electrochemical energy storage Interfacial nanostructures Batteries ELECTRODES NANOMATERIALS
在线阅读 下载PDF
Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy
12
作者 Yutong Xiong Ting Meng +3 位作者 Wendi Luo Bin Tu Shuai Wang Qingdao Zeng 《Chinese Journal of Structural Chemistry》 2025年第2期57-61,共5页
The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-d... The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-dicarboxylic acid(BCBDA))containing naphthalene rings on graphite surfaces have been investigated using scanning tunneling microscopy(STM).The transformation of nanostructures induced by the second components(EDA and PEBP-C4)have been also examined.Both CTTA and BCBDA molecules self-assemble at the 1-heptanoic acid(HA)/HOPG interface,forming porous network structures.The dimer represents the most elementary building unit due to the formation of double hydrogen bonds.Moreover,the flipping of naphthalene ring results in the isomerization of BCBDA molecule.The introduction of carboxylic acid derivative EDA disrupts the dimer,which subsequently undergoes a structural conformation to form a novel porous structure.Furthermore,upon the addition of pyridine derivative PEBP-C4,N–H⋯O hydrogen bonds are the dominant forces driving the three coassembled structures.We have also conducted density functional theory(DFT)calculations to determine the molecular conformation and analyze the mechanisms underlying the formation of nanostructures. 展开更多
关键词 Co-assembly CONFORMATION Hydrogen bonds Scanning tunneling microscopy DFT calculations
原文传递
Electron Microscopy and Spectroscopy Investigation of Atomic, Electronic, and Phonon Structures of NdNiO_(2)/SrTiO_(3) Interface
13
作者 Yuan Yin Mei Wu +9 位作者 Xiang Ding Peiyi He Qize Li Xiaowen Zhang Ruixue Zhu Ruilin Mao Xiaoyue Gao Ruochen Shi Liang Qiao Peng Gao 《Chinese Physics Letters》 2025年第4期130-141,共12页
The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus... The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface. 展开更多
关键词 atomic structure phonon structure electron microscopy electronic structure SPECTROSCOPY NdNiO SrTiO interface thin films superconducting cupratesprovide
原文传递
Application of high-temperature confocal scanning laser microscopy to investigate non-metallic inclusions in steel:a review
14
作者 N.Preisser Y.Wang +3 位作者 J.Cejka I.Gruber W.Mu S.K.Michelic 《Journal of Iron and Steel Research International》 2025年第2期334-352,共19页
High-temperature confocal scanning laser microscopy(HT-CSLM)is a potent methodology for investigating various phenomena in the field of metallurgy.Initially applied to the observation of solid phase transformations an... High-temperature confocal scanning laser microscopy(HT-CSLM)is a potent methodology for investigating various phenomena in the field of metallurgy.Initially applied to the observation of solid phase transformations and solidification,this method has gained traction in the field of non-metallic inclusion in steels in recent years.An overview of the experimental capabilities of HT-CSLM and the most important results of recent investigations regarding the topics of clean steel production are provided.It includes the formation of intragranular acicular ferrite(IAF)from the surface of non-metallic inclusions during the continuous cooling and heat treatment,which can be especially beneficial in the toughness of heat-affected zones of welded pieces.Furthermore,the investigation of agglomeration mechanisms of non-metallic inclusions(NMIs)in liquid steel is discussed to improve the insight into attraction forces between particles and clogging phenomena during continuous casting.Also,the dissolution of NMIs in various steelmaking slags can be observed by HT-CSLM to compare dissolution rates and mechanisms of NMI,where significant influences of temperature and chemical composition of the slag were shown.Last but not least,the experimental work regarding the interface between steel and slag is discussed,where novel techniques are currently being developed.A comprehensive summary of experimental techniques using HT-CSLM equipment to investigate different interactions of NMIs with steel and slag phases is compiled. 展开更多
关键词 Non-metallic inclusion STEEL High-temperature confocal scanning laser microscopy Interfacial phenomenon KINETICS
原文传递
Fusion-based enhancement of multi-exposure Fourier ptychographic microscopy
15
作者 Zhiping Wang Tianci Feng +2 位作者 Aiye Wang Jinghao Xu An Pan 《Advanced Photonics Nexus》 2025年第4期1-11,共11页
Fourier ptychographic microscopy(FPM)is an innovative computational microscopy approach that enables high-throughput imaging with high resolution,wide field of view,and quantitative phase imaging(QPI)by simultaneously... Fourier ptychographic microscopy(FPM)is an innovative computational microscopy approach that enables high-throughput imaging with high resolution,wide field of view,and quantitative phase imaging(QPI)by simultaneously capturing bright-field and dark-field images.However,effectively utilizing dark-field intensity images,including both normally exposed and overexposed data,which contain valuable high-angle illumination information,remains a complex challenge.Successfully extracting and applying this information could significantly enhance phase reconstruction,benefiting processes such as virtual staining and QPI imaging.To address this,we introduce a multi-exposure image fusion(MEIF)framework that optimizes dark-field information by incorporating it into the FPM preprocessing workflow.MEIF increases the data available for reconstruction without requiring changes to the optical setup.We evaluate the framework using both feature-domain and traditional FPM,demonstrating that it achieves substantial improvements in intensity resolution and phase information for biological samples that exceed the performance of conventional high dynamic range(HDR)methods.This image preprocessing-based information-maximization strategy fully leverages existing datasets and offers promising potential to drive advancements in fields such as microscopy,remote sensing,and crystallography. 展开更多
关键词 Fourier ptychographic microscopy multi-exposure image fusion computational imaging feature-domain nonlinear image fusion
在线阅读 下载PDF
Direct measurement and optimization of the polarization-dependent modulation depth in super-resolution structured illumination microscopy
16
作者 Linbo Wang Simin Li +4 位作者 Xiaohu Chen Xin Jin Jie Zhang Hui Li Gang Wen 《Journal of Innovative Optical Health Sciences》 2025年第4期121-131,共11页
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical... Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement. 展开更多
关键词 Structured illumination microscopy DEPOLARIZATION modulation depth phase compensation
原文传递
Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement:Toward optical resolution
17
作者 Yiyang Cao Shunfeng Lu +7 位作者 Cong Wan Yiguang Wang Xuan Liu Kangjun Guo Yubin Cao Zilong Li Qiegen Liu Xianlin Song 《Journal of Innovative Optical Health Sciences》 2025年第2期130-149,共20页
Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was propo... Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was proposed to achieve the transition from acoustic resolution to optical resolution.By modeling the degradation process from high-resolution image to low-resolution AR-PAM image with stable Gaussian noise(i.e.,mean state),a mean-reverting diffusion model is trained to learn prior information of the data distribution.Then the learned prior is employed to generate a high-resolution image from the AR-PAM image by iteratively sampling the noisy state.The performance of the proposed method was validated utilizing the simulated and in vivo experimental data under varying lateral resolutions and noise levels.The results show that an over 3.6-fold enhancement in lateral resolution was achieved.The image quality can be effectively improved,with a notable enhancement of∼66%in PSNR and∼480%in SSIM for in vivo data. 展开更多
关键词 Acoustic-resolution photoacoustic microscopy mean-reverting di®usion model gen-erative model resolution enhancement Noise insensitive
原文传递
Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super-resolution radial fluctuations
18
作者 Saeed Bohlooli Darian Jeongmin Oh +8 位作者 Bjorn Paulson Minju Cho Globinna Kim Eunyoung Tak Inki Kim Chan-Gi Pack Jung-Man Namgoong In-Jeoung Baek Jun Ki Kim 《Opto-Electronic Advances》 2025年第7期6-21,共16页
We developed an imaging technique combining two-photon computed super-resolution microscopy and suction-based stabilization to achieve the resolution of the single-cell level and organelles in vivo.To accomplish this,... We developed an imaging technique combining two-photon computed super-resolution microscopy and suction-based stabilization to achieve the resolution of the single-cell level and organelles in vivo.To accomplish this,a conventional two-photon microscope was equipped with a 3D-printed holders,which stabilize the tissue surface within the focal plane of immersion objectives.Further computational image stabilization and noise reduction were applied,followed by superresolution radial fluctuations(SRRF)analysis,doubling image resolution,and enhancing signal-to-noise ratios for in vivo subcellular process investigation.Stabilization of<1μm was obtained by suction,and<25 nm were achieved by subsequent algorithmic image stabilization.A Mito-Dendra2 mouse model,expressing green fluorescent protein(GFP)in mitochondria,demonstrated the potential of long-term intravital subcellular imaging.In vivo mitochondrial fission and fusion,mitochondrial status migration,and the effects of alcohol consumption(modeled as an alcoholic liver disease)and berberine treatment on hepatocyte mitochondrial dynamics are directly observed intravitally.Suction-based stabilization in two-photon intravital imaging,coupled with computational super-resolution holds promise for advancing in vivo subcellular imaging studies. 展开更多
关键词 SRRF in vivo subcellular imaging mitochondiral dynamics multiphoton intravital microscopy super resolution radial fluctuations
在线阅读 下载PDF
Progress and Prospect of Cryogenic Micro-and Nanomechanical In-Situ Characterization Techniques Based on Electron Microscopy
19
作者 Langlang Feng Keqiang Li Guangjian Peng 《Acta Mechanica Solida Sinica》 2025年第2期229-239,共11页
The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical character... The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics. 展开更多
关键词 Electron microscopy Micro-and nanomechanics Cryomechanical characterization In-Situ characterization
原文传递
Enhanced photoacoustic microscopy with physics-embedded degeneration learning
20
作者 Haigang Ma Shili Ren +4 位作者 Xiang Wei Yinshi Yu Jiaming Qian Qian Chen Chao Zuo 《Opto-Electronic Advances》 2025年第3期17-35,共19页
Deep learning(DL)is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy(PAM).Off-the-shelf DL... Deep learning(DL)is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy(PAM).Off-the-shelf DL models,however,do not necessarily obey the fundamental governing laws of PAM physical systems,nor do they generalize well to scenarios on which they have not been trained.In this work,a physics-embedded degeneration learning(PEDL)approach is proposed to enhance the image quality of PAM with a self-attention enhanced U-Net network,which obtains greater physical consistency,improves data efficiency,and higher adaptability.The proposed method is demonstrated on both synthetic and real datasets,including animal experiments in vivo(blood vessels of mouse's ear and brain).And the results show that compared with previous DL methods,the PEDL algorithm exhibits good performance in recovering PAM images qualitatively and quantitatively.It overcomes the challenges related to training data,accuracy,and robustness which a typical data-driven approach encounters,whose exemplary application envisions to provide a new perspective for existing DL tools of enhanced PAM. 展开更多
关键词 photoacoustic microscopy deep learning high quality imaging physical model
在线阅读 下载PDF
上一页 1 2 149 下一页 到第
使用帮助 返回顶部