期刊文献+
共找到1,253篇文章
< 1 2 63 >
每页显示 20 50 100
Microstructure Investigation on Refractories Under Optical Microscopes 被引量:1
1
作者 LI Yushan HAN Bo 《China's Refractories》 CAS 2013年第1期32-37,共6页
Optical microscopes with polishing equipment possess high performance/cost ratio for refractories industry. Here, the preparation of polishing sections of refractory materials and products and their observation under ... Optical microscopes with polishing equipment possess high performance/cost ratio for refractories industry. Here, the preparation of polishing sections of refractory materials and products and their observation under microscopes were introduced in detail. The observation of microstructures helps to improve and optimize production process. Optical microscopes can observe (1) homogenous or inhomogeneous composition distribution to improve mixing intensity; (2) coarse grains contact or not and contacted grain edges broken or intact to adjust the pressing parameters to avoid overpressure ; ( 3 ) the filling degree of components to optimize the particle size distribution; (4) the sintering necks and bridges and matrix shrinkage status to adjust sintering intensity or sintering atmosphere; (5) the crack edge in round or sharp to know when the cracks formed ( before or after entering sintering zone) and take countermeasures ; (6) used refractories to find the wear mechanism. 展开更多
关键词 MICROSTRUCTURES optical microscope REFRACTORIES MAGNESIA
在线阅读 下载PDF
Constant Force Feedback Controller Design Using PID-Like Fuzzy Technique for Tapping Mode Atomic Force Microscopes
2
作者 Yuan-Jay Wang 《Intelligent Control and Automation》 2013年第3期263-279,共17页
A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsy... A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsystem which is nonlinear and contains large uncertainty is first developed. Then, a PID-like fuzzy controller, combing a PD-like fuzzy controller and a PI controller, is designed to regulate the controller efforts and schedule the applied voltage of the Z-axis of the piezoelectric tube scanner to maintain a constant tip-sample interaction force during sample-scanning. Using the PID-like fuzzy controller allows the cantilever tip to track sample surface rapidly and accurately even though the topography of the surface is arbitrary and not given in advance. This rapid tracking response facilitates us to observe samples with high aspect ratio micro structures accurately and quickly. Besides, the overshoot which will result in tip crash in commercial AFMs with a traditional PID controller could be avoided. Additionally, the controller efforts can be intelligently scheduled by using the fuzzy logic. Thus, continuous manual gain-tuning by trial and error such as those in commercial AFMs is alleviated. In final, computer simulations and experimental verifications are provided to demonstrate the effectiveness and confirm the validity of the proposed controller. 展开更多
关键词 Atomic Force MICROSCOPE Piezoelectric Tube SCANNER TAPPING Mode PID-like Fuzzy Controller
暂未订购
Investigation into the Effect and Microscopic Mechanism of Retarders on Two-component Backfilling Grout in Shield Engineering
3
作者 CAI Hongwei MIN Fanlu +5 位作者 YUAN Rui LI Zhen ZHANG Jianfeng WANG Dengfeng ZHANG Yazhou YAO Zhanhu 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期84-95,共12页
To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmenta... To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength. 展开更多
关键词 backfilling grout two-component grout RETARDER working performance gelling performance microscopic mechanism
原文传递
Ultrastructure and key identification points of fossilized Os Draconis in traditional Chinese medicine
4
作者 Dong-Han Bai Zi Xing +5 位作者 Zi-Hao Zhang Zhi-Jie Zhang Da-Jun Lu Nan-Xi Huang Qiao-Chu Wang Lu Luo 《Traditional Medicine Research》 2026年第1期39-46,共8页
Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa... Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications. 展开更多
关键词 Os Draconis ULTRASTRUCTURE identification points electron probe polarized light microscope
暂未订购
Smart computational light microscopes(SCLMs)of smart computational imaging laboratory(SCILab) 被引量:10
5
作者 Yao Fan Jiaji Li +9 位作者 Linpeng Lu Jiasong Sun Yan Hu Jialin Zhang Zhuoshi Li Qian Shen Bowen Wang Runnan Zhang Qian Chen Chao Zuo 《PhotoniX》 SCIE EI 2021年第1期105-169,共65页
Computational microscopy,as a subfield of computational imaging,combines optical manipulation and image algorithmic reconstruction to recover multi-dimensional microscopic images or information of micro-objects.In rec... Computational microscopy,as a subfield of computational imaging,combines optical manipulation and image algorithmic reconstruction to recover multi-dimensional microscopic images or information of micro-objects.In recent years,the revolution in light-emitting diodes(LEDs),low-cost consumer image sensors,modern digital computers,and smartphones provide fertile opportunities for the rapid development of computational microscopy.Consequently,diverse forms of computational microscopy have been invented,including digital holographic microscopy(DHM),transport of intensity equation(TIE),differential phase contrast(DPC)microscopy,lens-free on-chip holography,and Fourier ptychographic microscopy(FPM).These computational microscopy techniques not only provide high-resolution,label-free,quantitative phase imaging capability but also decipher new and advanced biomedical research and industrial applications.Nevertheless,most computational microscopy techniques are still at an early stage of“proof of concept”or“proof of prototype”(based on commercially available microscope platforms).Translating those concepts to stand-alone optical instruments for practical use is an essential step for the promotion and adoption of computational microscopy by the wider bio-medicine,industry,and education community.In this paper,we present four smart computational light microscopes(SCLMs)developed by our laboratory,i.e.,smart computational imaging laboratory(SCILab)of Nanjing University of Science and Technology(NJUST),China.These microscopes are empowered by advanced computational microscopy techniques,including digital holography,TIE,DPC,lensless holography,and FPM,which not only enables multi-modal contrast-enhanced observations for unstained specimens,but also can recover their three-dimensional profiles quantitatively.We introduce their basic principles,hardware configurations,reconstruction algorithms,and software design,quantify their imaging performance,and illustrate their typical applications for cell analysis,medical diagnosis,and microlens characterization. 展开更多
关键词 MICROSCOPE Quantitative phase imaging(QPI) Phase contrast Multi-contrast Operating software Biological applications
在线阅读 下载PDF
Recent advances in nanorobotic manipulation inside scanning electron microscopes 被引量:7
6
作者 Chaoyang Shi Devin K Luu +7 位作者 Qinmin Yang Jun Liu Jun Chen Changhai Ru Shaorong Xie Jun Luo Ji Ge Yu Sun 《Microsystems & Nanoengineering》 EI 2016年第1期188-203,共16页
A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamb... A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples.Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices.This paper presents a comprehensive survey of recent advances in nanorobotic manipulation,including the development of nanomanipulation platforms,tools,changeable toolboxes,sensing units,control strategies,electron beam-induced deposition approaches,automation techniques,and nanomanipulation-enabled applications and discoveries.The limitations of the existing technologies and prospects for new technologies are also discussed. 展开更多
关键词 automated nanomanipulation scanning electron microscope SEM-based nanomanipulation
原文传递
Super-Sensitive and Visibility-Enhanced Imaging with NOON States for Birefringent and Isotropic Samples
7
作者 Shuang-Yin Huang Han-Bin Xi +7 位作者 Jing Gao Jing Wang Wen-Zheng Zhu Hao Li Chao Chen Zhi-Cheng Ren Xi-Lin Wang Hui-Tian Wang 《Chinese Physics Letters》 2025年第10期129-143,共15页
As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,qu... As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection. 展开更多
关键词 birefringent samples isotropic samples quantum precision measurement noon states phase imager quantum enhanced imaging microscopic detection toolquantum microscopes phase imaging
原文传递
Magnification:The game changer in dentistry 被引量:1
8
作者 Sachin Chauhan Radha Chauhan +1 位作者 Prashant Bhasin Meenu Bhasin 《World Journal of Methodology》 2025年第2期74-82,共9页
During dental examinations and treatments,many dentists are using magni-fication to improve their vision.The dental operating microscope serves as the most effective tool for this purpose,enhancing the quality,longevi... During dental examinations and treatments,many dentists are using magni-fication to improve their vision.The dental operating microscope serves as the most effective tool for this purpose,enhancing the quality,longevity,and outcome of clinical work.This review will explore the latest research and data on the importance of magnification devices in dentistry,including diagnostic methods,treatment options and ergonomics in specialities such as restorative dentistry,endodontics,pedodontics,periodontics,and prosthodontics.This review aims to provide insights into the optimal magnification for different clinical situations,the specific benefits of dental operating microscopes for each dental branch,and their limitations. 展开更多
关键词 MAGNIFICATION VISION ENDODONTICS DENTISTRY Dental operating microscope
暂未订购
Study on the Fluid-Solid Coupling Seepage of the Deep Tight Reservoir Based on 3D Digital Core Modeling 被引量:3
9
作者 Haijun Yang Zhenzhong Cai +5 位作者 Hui Zhang Chong Sun Jing Li Xiaoyu Meng Chen Liu Chengqiang Yang 《Energy Engineering》 2025年第2期537-560,共24页
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an... Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability. 展开更多
关键词 Digital core fluid-solid coupling pore structure microscopic seepage
在线阅读 下载PDF
Deciphering environmental factors influencing phytoplankton community structure in a polluted urban river 被引量:3
10
作者 Xiaxia Li Kai Chen +7 位作者 Chao Wang Tianyu Zhuo Hongtao Li Yong Wu Xiaohui Lei Ming Li Bin Chen Beibei Chai 《Journal of Environmental Sciences》 2025年第2期375-386,共12页
Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing... Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing phytoplankton communities and their growth influencing factors in polluted urban rivers can provide new ideas for pollution control.Here,we used direct microscopic count and environmental DNA(eDNA)metabarcoding methods to investigate phytoplankton community structure in Tuojiang River Basin(Chengdu,Sichuan Province,China).The association between phytoplankton community structure and water environmental factors was evaluated by Mantel analysis.Additional environmental monitoring data were used to pinpoint major factors that influenced phytoplankton growth based on structural equation modeling.At the phylum level,the dominant phytoplankton taxa identified by the conventional microscopic method mainly belonged to Bacillariophyta,Chlorophyta,and Cyanophyta,in contrast with Chlorophyta,Dinophyceae,and Bacillariophyta identified by eDNA metabarcoding.Inα-diversity analysis,eDNA metabarcoding detected greater species diversity and achieved higher precision than the microscopic method.Phytoplankton growth was largely limited by phosphorus based on the nitrogen-to-phosphorus ratios>16:1 in all water samples.Redundancy analysis and structural equation modeling also confirmed that the nitrogen-to-phosphorus ratio was the principal factor influencing phytoplankton growth.The results could be useful for implementing comprehensive management of the river basin environment.It is recommended to control the discharge of point-and surface-source pollutants and the concentration of dissolved oxygen in areas with excessive nutrients(e.g.,Jianyang-Ziyang).Algae monitoring techniques and removal strategies should be improved in 201 Hospital,Hongrihe Bridge and Colmar Town areas. 展开更多
关键词 Environmental DNA Microscopic count Phytoplankton growth Structural equation modeling Tuojiang River Basin
原文传递
Tip-enhanced Raman scattering of glucose molecules 被引量:3
11
作者 Zhonglin Xie Chao Meng +3 位作者 Donghua Yue Lei Xu Ting Mei Wending Zhang 《Opto-Electronic Science》 2025年第5期2-9,共8页
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain... Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis. 展开更多
关键词 tip-enhanced Raman scattering scanning near-field optical microscope fiber vector light field tip nanofocusing light source
在线阅读 下载PDF
In-situ observation and analysis of high temperature behavior of carbides in GCr15 bearing steel by confocal laser scanning microscopy 被引量:2
12
作者 Jun Ren Yue Teng +4 位作者 Xiang Liu Xi Xu Hui-gai Li Ke Han Qi-jie Zhai 《Journal of Iron and Steel Research International》 2025年第2期409-417,共9页
The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution ki... The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology. 展开更多
关键词 Bearing steel High-temperature confocal laser scanning microscope In-situ observation Primary carbide Fractal analysis
原文传递
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
13
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag Dissolution kinetics
原文传递
Impact of message fatigue and individual behavioral responses on epidemiological spread in temporal simplicial networks 被引量:1
14
作者 Xiao-Nan Fan Xuemei You 《Chinese Physics B》 2025年第3期32-43,共12页
Health information spreads rapidly,which can effectively control epidemics.However,the swift dissemination of information also has potential negative impacts,which increasingly attracts attention.Message fatigue refer... Health information spreads rapidly,which can effectively control epidemics.However,the swift dissemination of information also has potential negative impacts,which increasingly attracts attention.Message fatigue refers to the psychological response characterized by feelings of boredom and anxiety that occur after receiving an excessive amount of similar information.This phenomenon can alter individual behaviors related to epidemic prevention.Additionally,recent studies indicate that pairwise interactions alone are insufficient to describe complex social transmission processes,and higher-order structures representing group interactions are crucial.To address this,we develop a novel epidemic model that investigates the interactions between information,behavioral responses,and epidemics.Our model incorporates the impact of message fatigue on the entire transmission system.The information layer is modeled using a static simplicial network to capture group interactions,while the disease layer uses a time-varying network based on activity-driven model with attractiveness to represent the self-protection behaviors of susceptible individuals and self-isolation behaviors of infected individuals.We theoretically describe the co-evolution equations using the microscopic Markov chain approach(MMCA)and get the epidemic threshold.Experimental results show that while the negative impact of message fatigue on epidemic transmission is limited,it significantly weakens the group interactions depicted by higher-order structures.Individual behavioral responses strongly inhibit the epidemic.Our simulations using the Monte Carlo(MC)method demonstrate that greater intensity in these responses leads to clustering of susceptible individuals in the disease layer.Finally,we apply the proposed model to real networks to verify its reliability.In summary,our research results enhance the understanding of the information-epidemic coupling dynamics,and we expect to provide valuable guidance for managing future emerging epidemics. 展开更多
关键词 Monte Carlo simulation microscopic Markov chain approach message fatigue information-epidemic coupled spreading simplicial complex
原文传递
Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope
15
作者 Qiang Liu Xiang Li +3 位作者 Shen Du Ming Gao Yanbin Yin Jiongming Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期102-110,共9页
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest... During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels. 展开更多
关键词 mold flux low basicity BUBBLES three-dimensional X-ray microscope VISCOSITY
在线阅读 下载PDF
Microstructure,microchemistry,and micro-magnetism of dysprosium grain boundary diffused(Nd,Ce)-Fe-B magnets 被引量:1
16
作者 Yifei Xiao Lele Zhang +6 位作者 Tao Liu Qisong Sun Xiaolong Song Yikun Fang Anhua Li Minggang Zhu Wei Li 《Journal of Rare Earths》 2025年第3期556-568,I0005,共14页
The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain... The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain boundary diffused magnets is discussed.The domains perpendicular to the c-axis(easy magnetization direction)show a typical maze-like pattern,while those parallel to the c-axis show the characte ristics of plate domains.The significant gradient change is shown in the concentration of Dy with the direction of diffusion from the surface to the interior.Dy diffuses along grain boundaries and(Dy,Nd)_(2)Fe_(14)B layer with a high anisotropy field formed around the grains.Through in-situ electron probe micro-analysis/magnetic force microscopy(EPMA/MFM),it is found that the average domain width decreases,and the proportion of single domain grains increases as diffusion depth increases.This is caused by both the change of concentration and distribution of Dy.The grain boundary diffusion process changes the microstructure and microchemistry inside the magnet,and these local magnetism differences can be reflected by the configuration of the magnetic domain structure. 展开更多
关键词 Magnetic microstructures (Nd Ce)-Fe-B Rare earths Magnetic force microscope Grain boundary diffusion process(GBDP) In-situ
原文传递
Experimental Studies on the Mechanics of Graphene: A Review
17
作者 Pei Zhao 《Acta Mechanica Solida Sinica》 2025年第2期195-217,共23页
Graphene,a two-dimensional material with atomic thickness,holds significant importance in advancing the existing theories of solid mechanics.However,as an intersection of multiple scales,it poses challenges to experim... Graphene,a two-dimensional material with atomic thickness,holds significant importance in advancing the existing theories of solid mechanics.However,as an intersection of multiple scales,it poses challenges to experimental measurements of its mechanical behaviors.This review comprehensively discusses the recent achievements in experimental studies on the mechanics of graphene,focusing on sample preparation,loading design,and measurement techniques.Moreover,personal perspectives on the future development in this field are presented,aiming to provide insights and inspiration for researchers engaged in related studies. 展开更多
关键词 GRAPHENE Experimental mechanics Atomic force microscope Electron microscope Raman spectroscopy
原文传递
Hybrid CO_(2) thermal system for post-steam heavy oil recovery:Insights from microscopic visualization experiments and molecular dynamics simulations
18
作者 Ning Lu Xiaohu Dong +4 位作者 Haitao Wang Huiqing Liu Zhangxin Chen Yu Li Deshang Zeng 《Energy Geoscience》 2025年第2期233-248,共16页
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments... The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR. 展开更多
关键词 Heavy oil Hybrid CO_(2)thermal system Microscopic visualization experiment Molecular dynamics simulation Microscopic mechanism
在线阅读 下载PDF
Application of Motic Digital Microscope Mutual System in the Experimental Teaching of Medicinal Plants
19
作者 Hailin LU Min GUO +3 位作者 Shenggao YIN Bin LI Yonghua LI Haicheng WEN 《Medicinal Plant》 2025年第2期88-90,共3页
In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly effi... In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy. 展开更多
关键词 MICROSCOPE Medicinal plants Mutual system Experimental teaching
在线阅读 下载PDF
Revealing high-temperature oxidation behavior and structure evolution of SnS:an electron microscopic investigation
20
作者 Si-Kang Zheng Zhen-Hua Zhang +8 位作者 Yan-Yan Tao Xiao-Meng Yang Jie Liu Hong-Hui Wang Guang Han Xu Lu Guo-Yu Wang Bin Zhang Xiao-Yuan Zhou 《Rare Metals》 2025年第6期4086-4094,共9页
SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can... SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can be used as an effective strategy for surface engineering,allowing for structure modulation or design,property tuning and application exploration.However,there is currently a gap in understanding the relationship between the oxidation behavior of SnS,the structure of its oxidized surface,and the dependence on oxidation temperature.In this study,we systematically investigated the evolution of SnS surfaces under thermal oxidation using electron microscopy.The microstructure evolution(e.g.,surface structures,phases,defects,and interface)of SnS during high-temperature oxidation has been fully characterized and studied based on cross-sectional samples.Various surface heterostructures were constructed,including SnO_(2)/SnS,SnO_(2)/SnS_(2)/SnS,and SnO_(2)/Sn_(2)S_(3)/SnS,offering significant potential for the surface functionalization of SnS-based systems.Accordingly,oxidation mechanisms at different stages were elucidated based on the detailed and clear picture of microstructures.This research not only deepens our understanding of the fundamental science of SnS oxidation but also provides valuable insights for preventing and developing surface oxidation engineering in SnS and other van der Waals chalcogenides/materials. 展开更多
关键词 SNS Oxidation Heterogeneous surfaces Electron microscopic investigation Formation mechanism
原文传递
上一页 1 2 63 下一页 到第
使用帮助 返回顶部