期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
Bayesian optimization of operational and geometric parameters of microchannels for targeted droplet generation
1
作者 Zifeng Li Xiaoping Guan +3 位作者 Jingchang Zhang Qiang Guo Qiushi Xu Ning Yang 《Chinese Journal of Chemical Engineering》 2025年第8期244-253,共10页
Integrating Bayesian Optimization with Volume of Fluid (VOF) simulations, this work aims to optimize the operational conditions and geometric parameters of T-junction microchannels for target droplet sizes. Bayesian O... Integrating Bayesian Optimization with Volume of Fluid (VOF) simulations, this work aims to optimize the operational conditions and geometric parameters of T-junction microchannels for target droplet sizes. Bayesian Optimization utilizes Gaussian Process (GP) as its core model and employs an adaptive search strategy to efficiently explore and identify optimal combinations of operational parameters within a limited parameter space, thereby enabling rapid optimization of the required parameters to achieve the target droplet size. Traditional methods typically rely on manually selecting a series of operational parameters and conducting multiple simulations to gradually approach the target droplet size. This process is time-consuming and prone to getting trapped in local optima. In contrast, Bayesian Optimization adaptively adjusts its search strategy, significantly reducing computational costs and effectively exploring global optima, thus greatly improving optimization efficiency. Additionally, the study investigates the impact of rectangular rib structures within the T-junction microchannel on droplet generation, revealing how the channel geometry influences droplet formation and size. After determining the target droplet size, we further applied Bayesian Optimization to refine the rib geometry. The integration of Bayesian Optimization with computational fluid dynamics (CFD) offers a promising tool and provides new insights into the optimal design of microfluidic devices. 展开更多
关键词 Bayesian optimization VOF microchannels CFD Rib structure Optimal design
在线阅读 下载PDF
A Review of Pressure Drop Characteristics and Optimization Measures of Two-Phase Flow with Low Boiling Point Working Fluids in Microchannels
2
作者 Zongyu Jie Chao Dang Qingliang Meng 《Frontiers in Heat and Mass Transfer》 2025年第4期1053-1089,共37页
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan... With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices. 展开更多
关键词 Pressure drop two-phase flow microchannels bubble shape prediction model
在线阅读 下载PDF
Experimental Study on Flow Boiling Characteristics of Low-GWP Fluid R1234yf in Microchannels Heat Sink
3
作者 Ying Zhang Chao Dang Zhiqiang Zhang 《Frontiers in Heat and Mass Transfer》 2025年第4期1215-1242,共28页
In this study,the flow boiling characteristics of R1234yf in parallel microchannels were experimentally investigated.The experiments were conducted with heat flux from 0 to 550 kW/m^(2),mass flux of 434,727,and 1015 k... In this study,the flow boiling characteristics of R1234yf in parallel microchannels were experimentally investigated.The experiments were conducted with heat flux from 0 to 550 kW/m^(2),mass flux of 434,727,and 1015 kg/(m2 s),saturation temperatures of 293,298,and 303 K,and inlet sub-cooling of 5,10,and 15 K.The analysis of the experimental results provides the following conclusions:a reduced mass flux and lower subcooling correspond to a diminished degree of superheat at the boiling inception wall;conversely,an elevated saturation temperature results in a reduced amount of superheat at the boiling inception wall.Furthermore,an increase in sub-cooling and saturation temperature will enhance heat transfer efficiency.The wall temperature is mostly influenced by variations in saturation temperature and is minimally related to changes in mass flux and subcooling degree.An increase in mass flux results in a greater pressure drop attributed to heightened frictional pressure loss.The variation in pressure drop with respect to sub-cooling is minimal,while an increased saturation temperature correlates with a reduced pressure drop due to the formation of smaller bubbles and lowered frictional pressure loss at high saturation pressures.This study thoroughly examines and summarizes the effects of mass flow rate,saturation temperature,and subcooling on the flow-boiling heat transfer and pressure drop characteristics of R1234yf.Furthermore,the new correlation has 93.42%of the predicted values fall within a 15%mean absolute error,exhibiting a mean absolute error of 5.75%.It provides a superior method for predicting the flow-boiling heat transfer coefficients of R1234yf in the heat sink of parallel microchannels compared to existing correlations. 展开更多
关键词 Flow boiling microchannels high heat flux heat transfer pressure drop
在线阅读 下载PDF
The customized design and fabrication of microchannels via optically induced dielectrophoresis for particle manipulation
4
作者 Wenhao Wang Zhizheng Gao +5 位作者 Xuehao Feng Xiangyu Teng Zezheng Qiao Zhixing Ge Qun Fan Wenguang Yang 《Nanotechnology and Precision Engineering》 2025年第3期57-65,共9页
The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we pr... The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we propose a method for manufacturing microchannels using optically induced dielectrophoresis technology to induce the polymerization of polyethylene glycol diacrylate solution.To overcome limitations related to the light intensity energy and the size of intact microchannels,we design and manufacture microstructures of various shapes with a height of 4µm.Additionally,we simulate and analyze the movement of and forces acting on polystyrene(PS)microspheres at different spatial positions within the microchannels.Finally,we successfully demonstrate applications involving the transport of PS microspheres in custom-fabricated microchannels.This novel biocompatible microchannel manufacturing method is simple and non-biotoxic.It provides a new approach for simulating physiological environments in vitro and cultivating and manipulating cells. 展开更多
关键词 MICROCHANNEL Optically induced dielectrophoresis PEGDA Particle manipulation
在线阅读 下载PDF
Enhanced Flow Boiling Heat Transfer of HFE-7100 in Open Microchannels Using Micro-Nano Composite Structures
5
作者 Liaofei Yin Kexin Zhang +3 位作者 Tianjun Qin Wenhao Ma YiDing Yawei Xu 《Frontiers in Heat and Mass Transfer》 2025年第3期751-764,共14页
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho... Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty. 展开更多
关键词 Open microchannel laser ablation micro-nano composite structures flow boiling heat transfer enhancement
在线阅读 下载PDF
Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels
6
作者 Elena Mosheva Ivan Krasnyakov 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1743-1758,共16页
Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over... Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering. 展开更多
关键词 Shearlet analysis complexity measure entropy measure CONVECTION microchannels double-diffusive instability
在线阅读 下载PDF
Numerical Simulation of Droplet Generation in Coaxial Microchannels
7
作者 Zongjun Yin Rong Su Hui Xu 《Fluid Dynamics & Materials Processing》 EI 2024年第3期487-504,共18页
In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop ... In this study,numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics(level-set method).Four flow patterns,namely“drop flow”,“jet flow”,“squeeze flow”,and“co-flow”,have been obtained for different flow velocity ratios,channel diameter ratios,density ratios,viscosity ratios,and surface tension.The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly,and the associated droplet generation process has been critically discussed considering the related frequency,diameter,and pinch-off length.In particular,it is shown that the larger the flow velocity ratio,the smaller the diameter of generated droplets and the shorter the pinch-off length.The pinch-off length of a droplet is influenced by the channel diameter ratio and density ratio.The changes in viscosity ratio have a negligible influence on the droplet generation pinching frequency.With an increase in surface tension,the frequency of generation and pinch-off length of droplets decrease,but for small surface tension the generation diameter of droplet increases. 展开更多
关键词 Droplet generation characteristics coaxial microchannels flow patterns pinch-off length
在线阅读 下载PDF
Growth behavior of CVD diamond in microchannels of Cu template 被引量:3
8
作者 刘学璋 张雄伟 余志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期2009-2017,共9页
Deposition of diamond inside the trenches or microchannels by chemical vapor deposition (CVD) is limited by the diffusion efficiency of important radical species for diamond growth (H, CH3) and the pore depth of t... Deposition of diamond inside the trenches or microchannels by chemical vapor deposition (CVD) is limited by the diffusion efficiency of important radical species for diamond growth (H, CH3) and the pore depth of the substrate template. By ultrasonic seeding with nanodiamond suspension, three-dimensional (3D) penetration structure diamond was successfully deposited in cylindrical microchannels of Cu template by hot-filament chemical vapor deposition. Micro-Raman spectroscopy and scanning electron microscopy (SEM) were used to characterize diamond film and the effects of microchannel depth on the morphology, grain size and growth rate of diamond film were comprehensively investigated. The results show that diamond quality and growth rate sharply decrease with the increase of the depth of cylindrical microchannel. Individual diamond grain develops gradually from faceted crystals into micrometer cluster, and finally to ballas-type nanocrystalline one. In order to modify the rapid decrease of diamond quality and growth rate, a new hot filament apparatus with a forced gas flow through Cu microchannels was designed. Furthermore, the growth of diamond film by new apparatus was compared with that without a forced gas flow, and the enhancement mechanism was discussed. 展开更多
关键词 chemical vapor deposition DIAMOND TEMPLATE Cu substrate MICROCHANNEL
在线阅读 下载PDF
Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels 被引量:3
9
作者 Yuan Xing Tao Zhi +1 位作者 Li Haiwang Tian Yitu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1575-1581,共7页
This paper experimentally investigates the effect of surface roughness on flow and heat transfer characteristics in circular microchannels. All test pieces include 44 identical, parallel circular microchannels with di... This paper experimentally investigates the effect of surface roughness on flow and heat transfer characteristics in circular microchannels. All test pieces include 44 identical, parallel circular microchannels with diameters of 0.4 mm and 10 mm in length. The surface roughness of the microchannels is R= 0.86, 0.92, 1.02 lm, and the Reynolds number ranges from 150 to 2800.Results show that the surface roughness of the circular microchannels has remarkable effects on the performance of flow behavior and heat transfer. It is found that the Poiseuille and Nusselt numbers are higher when the relative surface roughness is larger. For flow behavior, the friction factor increases consistently with the increasing Reynolds number, and it is larger than the constant theoretical value for macrochannels. The Reynolds number for the transition from laminar to turbulent flow is about 1500, which is lower than the value for macrochannels. For the heat transfer property, Nusselt number also increases with increasing Reynolds number, and larger roughness contributes to higher Nusselt number. 展开更多
关键词 CIRCULAR Flow behavior Heat transfer microchannels ROUGHNESS
原文传递
Experimental investigation on boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels subjected to an acceleration force 被引量:2
10
作者 Sujun DONG Hongsheng JIANG +3 位作者 Yongqi XIE Xiaoming WANG Zhongliang HU Jun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第5期1136-1144,共9页
Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter... Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter long rotational arm was used to simulate the acceleration magnitude up to 9 g and three various acceleration directions. Three test sections with different geometric parameters were applied. The volume concentration of Al_2O_3 nanoparticles with an average diameter of 13 nm was varied from 0.07% to 0.1%. The mass flow rate and vapor quality were in ranges of 3–6 kg/h and 0.4–1.0%, respectively. The effects of the mass flow rate, microchannel aspect ratio,vapor quality, nanoparticle volume concentration, and acceleration direction and magnitude were analyzed in a systematic manner. Experimental results showed that the acceleration direction and magnitude had significant influences on the boiling heat transfer. The heat transfer under configuration C was found to be superior to that under configurations A and B. Moreover, the heat transfer coefficient increased with increases of the mass flow rate and the volume concentration and decreased with the aspect ratio. 展开更多
关键词 ACCELERATION BOILING heat transfer MICROCHANNEL NANOFLUID SWIRL microchannels
原文传递
Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels
11
作者 Zhao-Miao Liu Li-Kun Liu Feng Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期741-749,共9页
Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as ... Droplets generation in Y-junctions and anti-Yjunctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation.Geometric configuration of a microchannel,such as Y-angle(90°,135°,-90° and-135°),channel depth and other factors have been taken into consideration.It is found that droplets generated in anti-Y-junctions have a smaller size and a shorter generation cycle compared with those in Yjunctions under the same experimental conditions.Through observing the internal velocity field,the vortex appearing in continuous phase in anti-Y-junctions is one of the key factors for the difference of droplet size and generation cycle.It is found that droplet size is bigger and generation cycle is longer when the absolute angle value of the intersection between the continuous and the dispersed phases(i.e.,the angle between the main channel and the continuous phase or the dispersed phase channel) increases.The droplet's size is influenced by the Y-angle,which varies with the channel depth in Y-junctions.The Y-angle has a positive effect on the droplet generation cycle,but a smaller height-width ratio will enhance the impact of a continuous and dispersed phase's intersection angle on the droplet generation cycle in Y-junctions microchannels. 展开更多
关键词 MICROFLUIDICS Y-junctions and anti-Yjunctions microchannels Y-angle Height-width ratio in cross section
在线阅读 下载PDF
Radio Frequency-Microchannels for Transdermal Delivery: Characterization of Skin Recovery and Delivery Window
12
作者 Yossi Kam Hagit Sacks +2 位作者 Keren Mevorat Kaplan Meir Stern Galit Levin 《Pharmacology & Pharmacy》 2012年第1期20-28,共9页
Transdermal delivery through Radio-Frequency-MicroChannels (RF-MCs) was proven to be a promising delivery method for hydrophilic drugs and macromolecules that must be injected. An important issue in assessing this tec... Transdermal delivery through Radio-Frequency-MicroChannels (RF-MCs) was proven to be a promising delivery method for hydrophilic drugs and macromolecules that must be injected. An important issue in assessing this technology is the life span of the microchannels (MCs). The time window in which the MCs remain open affects the delivery rate and determine the effective delivery duration. The present work focused on the characterization of the ViaDor-MCs recovery and closure process by measurements of transepidermal water loss (TEWL) before and after the formation of MCs, evaluation of the delivery window, and assessment of skin histology. Testosterone-cyclodextrin complex was used as the model drug for evaluation of the transdermal delivery. In-vitro permeation system and in-vivo guinea pig animal model were used in the delivery studies. Our findings demonstrate the recovery process of MCs created by the RF ablation technology. The observed gradual skin recovery affected the transdermal delivery rate. A significant transdermal delivery was shown up to 24 hrs post device application suggesting that an extended delivery of water soluble drugs, including macromolecules, is possible. The histology assessments demonstrated repair and healing of the induced MCs indicating that the RF micro-channeling technology is minimally invasive, transient in nature with no resulting skin trauma. 展开更多
关键词 Microporation microchannels RF ablation TESTOSTERONE TRANSDERMAL Delivery
暂未订购
Microfluidic Behavior of Ternary Mixed Carrier Solvents Based on the Tube Radial Distribution in Triple-Branched Microchannels in a Microchip
13
作者 Naoya Jinno Masahiko Hashimoto Kazuhiko Tsukagoshi 《Journal of Analytical Sciences, Methods and Instrumentation》 2012年第2期49-53,共5页
Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated i... Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated into three narrow channels, i.e., triple-branched microchannels. When the ternary carrier solution containing the fluorescent dyes, hydrophobic perylene (blue) and relatively hydrophilic Eosin Y (green), was fed into the wide channel under laminar flow conditions, the carrier solvent molecules or fluorescence dyes were radially distributed in the channel, forming inner (organic solvent-rich major;blue) and outer (water-rich minor;green) phases in the wide channel. And then, in the narrow channels, perylene molecules mostly appeared to flow through the center narrow channel and Eosin Y, which is distributed in the outer phases in the wide channel, flowed through the both side narrow channels. A metal ion, Cu(II) as a model, dissolved in the ternary mixed carrier solution was also examined. The Cu(II) showed fluidic behavior, transferring from the homogeneous carrier solution to the water-rich solution in the side narrow channels through the triple-branched microchannels. 展开更多
关键词 Triple-Branched microchannels TERNARY MIXED Solvents Fluorescence Dyes Metal Ion TUBE Radial Distribution Phenomenon (TRDP)
在线阅读 下载PDF
An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels
14
作者 Tao H Meng-Dan HU +1 位作者 Si-si Zhou Dong-Ke SUN 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期89-92,共4页
We numerically study the dynamics of particle crystals in annular microchannels by the immersed-boundary(IB)lattice Boltzmann(LB) coupled model, analyze the fluid-particle interactions during the migration of part... We numerically study the dynamics of particle crystals in annular microchannels by the immersed-boundary(IB)lattice Boltzmann(LB) coupled model, analyze the fluid-particle interactions during the migration of particles,and reveal the underlying mechanism of a particle focusing on the presence of fluid flows. The results show that the Reynolds and Dean numbers are key factors influencing the hydrodynamics of particles. The particles migrate onto their equilibrium tracks by adjusting the Reynolds and Dean numbers. Elliptical tracks of particles during hydrodynamic focusing can be predicted by the IB-LB model. Both the small Dean number and the small particle can lead to a small size of the focusing track. This work would possibly facilitate the utilization of annular microchannel flows to obtain microfluidic flowing crystals for advanced applications in biomedicine and materials synthesis. 展开更多
关键词 An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular microchannels
原文传递
Measurement and Correlation of Pressure Drop for Gas-Liquid Two-phase Flow in Rectangular Microchannels 被引量:16
15
作者 MA Youguang JI Xiyan WANG Dongji FU Taotao ZHU Chunying 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期940-947,共8页
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr... The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data. 展开更多
关键词 pressure drop rectangular cross-section microchannel surface tension configuration influence Chis-holm parameter C
在线阅读 下载PDF
Laminar flow of micropolar fluid in rectangular microchannels 被引量:8
16
作者 Shangjun Ye Keqin Zhu W. Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期403-408,共6页
Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a mic... Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the z-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper, the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail. 展开更多
关键词 Micropolar fluid. Microchannel Flowrate reduction Chebyshev collocation method
在线阅读 下载PDF
Numerical Simulation of the Scalar Mixing Characteristics in Three-dimensional Microchannels 被引量:2
17
作者 刘演华 林建忠 +1 位作者 包福兵 石兴 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期297-302,共6页
Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the... Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure. 展开更多
关键词 MICROCHANNEL MIXER mixing efficiency numerical simulation
在线阅读 下载PDF
Rotating electroosmotic flows in soft parallel plate microchannels 被引量:1
18
作者 Yongbo LIU Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期1017-1028,共12页
We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid... We present a theoretical investigation of rotating electroosmotic flows(EOFs) in soft parallel plate microchannels. The soft microchannel, also called as the polyelectrolyte-grafted microchannel, is denoted as a rigid microchannel coated with a polyelectrolyte layer(PEL) on its surface. We compare the velocity in a soft microchannel with that in a rigid one for different rotating frequencies and find that the PEL has a trend to lower the velocities in both directions for a larger equivalent electrical double layer(EDL) thickness λFCL(λFCL = 0.3) and a smaller rotating frequency ω(ω < 5).However, for a larger rotating frequency ω(ω = 5), the main stream velocity u far away from the channel walls in a soft microchannel exceeds that in a rigid one. Inspired by the above results, we can control the EOF velocity in micro rotating systems by imparting PELs on the microchannel walls, which may be an interesting application in biomedical separation and chemical reaction. 展开更多
关键词 ROTATING ELECTROOSMOTIC flow (EOF) SOFT microchannel POLYELECTROLYTE layer (PEL) thickness
在线阅读 下载PDF
Study on the mixing of fluid in curved microchannels with heterogeneous surface potentials 被引量:1
19
作者 林建忠 张凯 李惠君 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第11期2688-2696,共9页
In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describ... In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describing the wall potential and external potential are solved to get the distribution of wall potential and external potential, then momentum equation is solved to get the fully developed flow field. Finally the mass transport equation is solved to get the concentration field. The results show that the curved microchannel has an optimized capability of sample mixing and transport when the heterogeneous surface is located at the left conjunction between the curved part and straight part. The variation of heterogeneous surface potential ψn has more influence on the capability of sample mixing than on that of sample transport. The ratio of the curved microchanners radius to width has a comparable effect on the capability of sample mixing and transport. The conclusions above are helpful to the optimization of the design of microfluidic devices for the improvement of the efficiency of sample mixing. 展开更多
关键词 MICROCHANNEL mixing efficiency electroosmosis numerical simulation
原文传递
Electromagnetohydrodynamic flows and mass transport in curved rectangular microchannels 被引量:1
20
作者 Yongbo LIU Yongjun JIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1431-1446,共16页
Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length.In ... Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length.In this paper,the effective diffusivity of a neutral solute in an oscillating electromagnetohydrodynamic(EMHD)flow through a curved rectangular microchannel is investigated theoretically.The flow is assumed as a creeping flow due to the extremely low Reynolds number in such microflow systems.Through the theoretical analysis,we find that the effective diffusivity primarily depends on five dimensionless parameters,i.e.,the curvature ratio of the curved channel,the Schmidt number,the tidal displacement,the angular Reynolds number,and the dimensionless electric field strength parameter.Based on the obtained results,we can precisely control the mass transfer characteristics of the EMHD flow in a curved rectangular microchannel by appropriately altering the corresponding parameter values. 展开更多
关键词 electromagnetohydrodynamic(EMHD)flow curved rectangular microchannel mass transfer characteristic effective diffusivity
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部