To consider fiber random distribution at the microscale for the multiscale model based on the micro-mechanics failure(MMF)theory,clustering method is used for the extraction of amplification factors.As the clustering ...To consider fiber random distribution at the microscale for the multiscale model based on the micro-mechanics failure(MMF)theory,clustering method is used for the extraction of amplification factors.As the clustering method is a kind of unsupervised machine learning method,the elements with similar mechanical behavior under external loading can be included in a cluster automatically at the microscale.With this modification,the fiber random distribution model can be used for multiscale damage analysis in the framework of MMF theory.To validate the modified multiscale analysis method,progressive damage analysis of a kind of 2D twill woven composites is conducted based on different microscale models.The stress values for microscale models with fiber hexagonal and random distribution patterns are compared first.Much higher stress concentration is generated in the fiber random distribution model due to the smaller inter-fiber distance especially under longitudinal shear loading.The obtained cluster distribution results exhibit the characters of the stress distribution in the two microscale models.Thereafter,tensile and compressive responses of the 2D twill woven composite are predicted with the modified multiscale analysis method and accuracy of the method is verified through comparison with published experimental results.From the simulation results,it can be found that the matrix damage initiation from the model based on the fiber random distribution model is premature compared with that from the model based on the fiber hexagonal distribution model.Besides,under tensile loading,the damage all initiates from the fill tows and propagates to the wrap tows.However,under compressive loading,the matrix damage initiates from the wrap tows in the model based on the fiber random distribution model.展开更多
A loss of integrity and the effects of damage on mechanical attributes result in macro/micro-mechanical failure,especially in composite structures.As a progressive degradation of material continuity,predictions for an...A loss of integrity and the effects of damage on mechanical attributes result in macro/micro-mechanical failure,especially in composite structures.As a progressive degradation of material continuity,predictions for any aspects of the initiation and propagation of damage need to be identified by a trustworthy mechanism to guarantee the safety of structures.Besides material design,structural integrity and health need to be monitored carefully.Among the most powerful methods for the detection of damage are machine learning(ML)and deep learning(DL).In this paper,we review state-of-the-art ML methods and their applications in detecting and predicting material damage,concentrating on composite materials.The more influential ML methods are identified based on their performance,and research gaps and future trends are discussed.Based on our findings,DL followed by ensemble-based techniques has the highest application and robustness in the field of damage diagnosis.展开更多
Warp yarns and weft yarns of plain woven fabric are the principal axes of mate- rial of fabric. They are orthogonal in their original con?guration, but are obliquely crisscross in deformed con?guration in general. I...Warp yarns and weft yarns of plain woven fabric are the principal axes of mate- rial of fabric. They are orthogonal in their original con?guration, but are obliquely crisscross in deformed con?guration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based on the micro-mechanical model of fabric.展开更多
A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity an...A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity and ductile damage of the matrix, the failure of T300/914 UD composite under longitudinal compression and in-plane combined loads was simulated by this model. Simulation results show that the longitudinal compressive failure of the UD composite is caused by the plastic yielding of the matrix in kink band, and the fiber initial imperfection is the main reason for it. Under in-plane combined loads, the stress state of the matrix in kink band is changed, which affects the longitudinal compressive failure modes and strength of UD composite.The failure envelope of r_1–s_(12) and r_1–r_2 are obtained by the micro-mechanical model. Meanwhile,the compressive failure mechanism of the UD composite is analyzed. Numerical results agree well with the experimental data, which verifies the validity of the micro-mechanical model.展开更多
This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and ...This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and 70%)was treated by reconstituted cementitious binders with varying gypsum to clinker(G/C)ratios and added metakaolin to facilitate the formation of ettringite,followed by the measurements of final water contents,dry densities and strengths in accordance with ASTM standards as well as microstructure by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).Results reveal that the gypsum fraction has a significant influence on the index and mechanical properties of the CBSC,and there exists a threshold of the G/C ratio,which is 10%and 15%for clays with 50%and 70%initial water contents,respectively.Beyond which adding excessive gypsum cannot improve the strength further,eliminating the beneficial role.At these thresholds of the G/C ratio,the unconfined compressive strength(UCS)values for clays with 50%and 70%initial water contents are 1.74 MPa and 1.53 MPa at 60 d of curing,respectively.Microstructure characterization shows that,besides the common cementation-induced strengthening,newly formed ettringite also acts as significant pore infills,and the associated remarkable volumetric expansion is responsible,and may be the primary factor,for the beneficial strength gain due to the added gypsum.Moreover,pore-filling ettringite also leads to the conversion of relatively large inter-aggregate to smaller intra-aggregate pores,thereby causing a more homogeneous matrix or solid skeleton with higher strength.Overall,added gypsum plays a vital beneficial role in the strength development of the CBSC,especially for very soft clays.展开更多
To investigate the impacts of water/supercritical CO_(2)-rock interaction on the micro-mechanical properties of shale,a series of high-temperature and high-pressure immersion experiments were performed on the calcareo...To investigate the impacts of water/supercritical CO_(2)-rock interaction on the micro-mechanical properties of shale,a series of high-temperature and high-pressure immersion experiments were performed on the calcareous laminated shale samples mined from the lower submember of the third member of Paleogene Shahejie Formation in the Jiyang Depression,Bohai Bay Basin.After that,grid nanoindentation tests were conducted to analyze the influence of immersion time,pressure,and temperature on micro-mechanical parameters.Experimental results show that the damage of shale caused by the water/supercritical CO_(2)-rock interaction was mainly featured by the generation of induced fractures in the clay-rich laminae.In the case of soaking with supercritical CO_(2),the aperture of induced fracture was smaller.Due to the existence of induced fractures,the statistical averages of elastic modulus and hardness both decreased.Meanwhile,compaction and stress-induced tensile fractures could be observed around the laminae.Generally,the longer the soaking time,the higher the soaking pressure and temperature,the more significant the degradation of micro-mechanical parameters is.Compared with water-rock interaction,the supercritical CO_(2)-rock interaction caused a lower degree of mechanical damage on the shale surface.Thus,supercritical CO_(2)can be used as a fracturing fluid to prevent the surface softening of induced fractures in shale reservoirs.展开更多
The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature l...The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries.展开更多
The micro-mechanism of the silicon-based waveguide surface smoothing is investigated systematically to explore the effects of silicon-hydrogen bonds on high-temperature hydrogen annealing waveguides. The effect of sil...The micro-mechanism of the silicon-based waveguide surface smoothing is investigated systematically to explore the effects of silicon-hydrogen bonds on high-temperature hydrogen annealing waveguides. The effect of silicon- hydrogen bonds on the surface migration movement of silicon atoms and the waveguide surface topography are revealed. The micro-migration from an upper state to a lower state of silicon atoms is driven by silicon- hydrogen bonding, which is the key to ameliorate the rough surface morphology of the silicon-based waveguide. The process of hydrogen annealing is experimentally validated based on the simulated parameters. The surface roughness declines from 1.523nm to 0.461 nm.展开更多
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ...The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.展开更多
Based on the tortuous-expanding path/channel model,a micro-mechanism model for porous media is developed.The proposed model is expressed as a function of tortuosity,porosity,resistance coefficient,and fluid properties...Based on the tortuous-expanding path/channel model,a micro-mechanism model for porous media is developed.The proposed model is expressed as a function of tortuosity,porosity,resistance coefficient,and fluid properties.Every parameter in the proposed model has clear physical meaning.The results show that the model predictions are ingood agreement with those from the existing experimental data.展开更多
Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint str...Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.展开更多
The mechanism of SC-CO_(2)-brine-rock interaction(SCBRI) and its effect on the mechanical properties of shale are crucial for shale oil development and CO_(2)sequestration. To clarify the influence of SCBRI on the mic...The mechanism of SC-CO_(2)-brine-rock interaction(SCBRI) and its effect on the mechanical properties of shale are crucial for shale oil development and CO_(2)sequestration. To clarify the influence of SCBRI on the micromechanics of shale, the lamina and matrix of shale were saturated with SC-CO_(2)-brine for 2, 4, 6,and 8 days, respectively. The micro-scratch technique was then used to measure the localized fracture toughness before and after SC-CO_(2)-brine saturation. Combining the micro-scratch results with SEM-QEMSCAN-EDS analysis, the differences in mineral composition and mechanical properties of lamina(primarily composed of carbonate minerals) and matrix(primarily composed of clay minerals) were studied. The QEMSCAN analysis and micro-scratch results indicate distinct mineralogical compositions and mechanical properties between the lamina and the matrix. The results showed that:(1) SCBRI leads to the decrease in carbonate mineral content and the significant increase in matrix porosity and laminar cracks. In addition, the damage degree increased at saturation for 6 days.(2) SCBRI weakens the mechanical properties of shale. The scratch depth of laminar and matrix increased by 34.38% and 1.02%, and the fracture toughness decreased by 34.38% and 13.11%. It showed a trend of first increasing and then decreasing.(3) SCBRI enhances the plastic deformation behavior of shale, and the plastic index of lamina and matrix increases by 18.75% and 21.58%, respectively. These results are of great significance for evaluating the mechanical properties of shale oil and gas extraction by CO_(2).展开更多
To elucidate the mechanism by which supercritical CO_(2)(SCCO_(2))-water-shale interactions during CO_(2)energized fracturing influence proppant embedment in lacustrine shale,shale samples from the Bohai Bay Basin wer...To elucidate the mechanism by which supercritical CO_(2)(SCCO_(2))-water-shale interactions during CO_(2)energized fracturing influence proppant embedment in lacustrine shale,shale samples from the Bohai Bay Basin were selected for SCCO_(2)-water-shale interaction experiments.X-ray diffraction(XRD),SEM large-area high-resolution imaging,automated mineral identification and characterization system(AMICS),and nanoindentation tests were employed to examine the micro-mechanical damage mechanisms of fracture surfaces and the evolving patterns of proppant embedment characteristics.The results reveal that:Prolonged interaction time reduces the contents of dolomite,feldspar,and clay minerals,while quartz content increases,with dolomite showing the most pronounced dissolution effect.As interaction time increases,the hardness and elasticity modulus of shale follow a power-law decay pattern,with the peak degradation rate occurring at 1 d,followed by a gradual decline of degradation velocity.Increasing interaction time results in growth in both the number and depth of embedment pits on the sample surface.After more than 3 d of interaction,clustered proppant embedment is observed,accompanied by the formation of deep embedment pits on the surface.展开更多
A crystal plasticity model is developed to predict the cyclic plasticity during the low-cycle fatigue of GH4169 superalloy.Accumulated plastic slip and energy dissipation as fatigue indicator parameters(FIPs)are used ...A crystal plasticity model is developed to predict the cyclic plasticity during the low-cycle fatigue of GH4169 superalloy.Accumulated plastic slip and energy dissipation as fatigue indicator parameters(FIPs)are used to predict fatigue crack initiation and the fatigue life until failure.Results show that fatigue damage is most likely to initiate at triple points and grain boundaries where severe plastic slip and energy dissipation are present.The predicted fatigue life until failure is within the scatter band of factor 2 when compared with experimental data for the total strain amplitudes ranging from 0.8%to 2.4%.Microscopically,the adjacent grain arrangements and their interactions account for the stress concentration.In addition,different sets of grain orientations with the same total grain numbers of 150 were generated using the present model.Results show that different sets have significant influence on the distribution of stresses between each individual grain at the meso-scale,although little effect is found on the macroscopic length-scale.展开更多
Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the i...Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes.展开更多
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani...Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.展开更多
Highly conductive fillers have a strong influence on improving the poor out of plane thermal conductivity of carbon fiber reinforced composites. The objective of this study has been to investigate the role of the diam...Highly conductive fillers have a strong influence on improving the poor out of plane thermal conductivity of carbon fiber reinforced composites. The objective of this study has been to investigate the role of the diamond powder (DP) in enhancing the out-of-plane thermal conductivity of the woven composites. Samples of the standard modulus T300 carbon fiber composite with 44% and 55% fiber volume fraction and the high modulus YS90A carbon fiber composite with 50% volume fraction were fabricated with their matrices comprising of neat epoxy and different loading of diamond powder within epoxy resin. Steady state thermal conductivity measurements were carried out and it was found from the measurements that the out of plane thermal conductivity of the standard modulus composite increased by a factor of 2.3 with 14% volume fraction of diamond powder in the composite while the out of plane thermal conductivity of the high modulus composite increased by a factor of 2.8 with 12% volume fraction of diamond powder in the composite. Finite Element Modeling (FEM) with the incorporation of microstructural characteristics is presented and good consistency between the measurements and FEM results were observed.展开更多
A numerical simulation of stochastic damage evolution process in the condition of low cycle fatigue loading is discussed. The relations between damage variables and micro-cracks are obtained by means of the micro-mech...A numerical simulation of stochastic damage evolution process in the condition of low cycle fatigue loading is discussed. The relations between damage variables and micro-cracks are obtained by means of the micro-mechanics model of the representative volume element proposed by Lemaitre and Dufailly([10]). The stochastic Initial damage values are introduced in consideration of the inherent micro-defects In materials. The model combined with a finite element method is applied to simulate the damage evolution process under low cycle fatigue loading. The micro-cracks on the sur face of a specimen of 19Mn6 alloy steel are measured with a replica technique. The numerical results show that the nonhomogeneity of damage and the localization of the fatigue failure are well shown by the proposed simulations, and the fatigue lives are reasonably predicted.展开更多
To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfi...To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment.展开更多
To investigate the post-liquefaction shearing behaviour of saturated gravelly soil,laboratory tests were conducted using a staticedynamic multi-purpose triaxial apparatus.In addition,numerical simulations using the di...To investigate the post-liquefaction shearing behaviour of saturated gravelly soil,laboratory tests were conducted using a staticedynamic multi-purpose triaxial apparatus.In addition,numerical simulations using the discrete element method(DEM)were performed to preliminarily understand the micromechanism of gravelly soil in monotonic loading after liquefaction.The influences of dry density,initial confining stress and degree of liquefaction on the post-liquefaction shearing behaviour of gravelly soil were discussed,and the evolution of the micro-parameters of the granular system was also analysed.The results show that the stressestrain responses of gravelly soil after liquefaction can be divided into three stages:(1)low strength stage,(2)super-linear strength recovery stage,and(3)sublinear strength recovery stage,which are distinctly different from those of the general saturated gravelly soil without previous cyclic loading.The initial state and prior dynamic stress history have significant influences on the post-liquefaction shearing behaviour of gravelly soil.The DEM simulation revealed that the average coordination number sharply increases,the contact normal shows an obvious orientation distribution,and the destroyed force chain backbones are reconstructed in the monotonic reloading process after liquefaction.The evolution of the micro-parameters of the granular system clearly reflects the interior interaction process and micro-mechanisms in the particles during the three different stages of the macro-mechanical behaviour of gravelly soil.展开更多
基金the support of the National Natural Science Foundation of China(No.11572086)the Fundamental Research Funds for the Central Universities+2 种基金the Scientific Research Innovation Program of Jiangsu Province College of China(No.KYLX16_0185)the Scientific Research Foundation of Graduate School of Southeast University of China(No.YBJJ1760)the China Scholarship Council of China(No.201706090076)。
文摘To consider fiber random distribution at the microscale for the multiscale model based on the micro-mechanics failure(MMF)theory,clustering method is used for the extraction of amplification factors.As the clustering method is a kind of unsupervised machine learning method,the elements with similar mechanical behavior under external loading can be included in a cluster automatically at the microscale.With this modification,the fiber random distribution model can be used for multiscale damage analysis in the framework of MMF theory.To validate the modified multiscale analysis method,progressive damage analysis of a kind of 2D twill woven composites is conducted based on different microscale models.The stress values for microscale models with fiber hexagonal and random distribution patterns are compared first.Much higher stress concentration is generated in the fiber random distribution model due to the smaller inter-fiber distance especially under longitudinal shear loading.The obtained cluster distribution results exhibit the characters of the stress distribution in the two microscale models.Thereafter,tensile and compressive responses of the 2D twill woven composite are predicted with the modified multiscale analysis method and accuracy of the method is verified through comparison with published experimental results.From the simulation results,it can be found that the matrix damage initiation from the model based on the fiber random distribution model is premature compared with that from the model based on the fiber hexagonal distribution model.Besides,under tensile loading,the damage all initiates from the fill tows and propagates to the wrap tows.However,under compressive loading,the matrix damage initiates from the wrap tows in the model based on the fiber random distribution model.
文摘A loss of integrity and the effects of damage on mechanical attributes result in macro/micro-mechanical failure,especially in composite structures.As a progressive degradation of material continuity,predictions for any aspects of the initiation and propagation of damage need to be identified by a trustworthy mechanism to guarantee the safety of structures.Besides material design,structural integrity and health need to be monitored carefully.Among the most powerful methods for the detection of damage are machine learning(ML)and deep learning(DL).In this paper,we review state-of-the-art ML methods and their applications in detecting and predicting material damage,concentrating on composite materials.The more influential ML methods are identified based on their performance,and research gaps and future trends are discussed.Based on our findings,DL followed by ensemble-based techniques has the highest application and robustness in the field of damage diagnosis.
基金Project supported by the National Natural Science Foundation of China (No. 10272079).
文摘Warp yarns and weft yarns of plain woven fabric are the principal axes of mate- rial of fabric. They are orthogonal in their original con?guration, but are obliquely crisscross in deformed con?guration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based on the micro-mechanical model of fabric.
文摘A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity and ductile damage of the matrix, the failure of T300/914 UD composite under longitudinal compression and in-plane combined loads was simulated by this model. Simulation results show that the longitudinal compressive failure of the UD composite is caused by the plastic yielding of the matrix in kink band, and the fiber initial imperfection is the main reason for it. Under in-plane combined loads, the stress state of the matrix in kink band is changed, which affects the longitudinal compressive failure modes and strength of UD composite.The failure envelope of r_1–s_(12) and r_1–r_2 are obtained by the micro-mechanical model. Meanwhile,the compressive failure mechanism of the UD composite is analyzed. Numerical results agree well with the experimental data, which verifies the validity of the micro-mechanical model.
基金supported by the National Key R&D Program of China (Grant No. 2019YFC1806004)National Natural Science Foundation of China (Grant Nos. 51878159 and 41572280)
文摘This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and 70%)was treated by reconstituted cementitious binders with varying gypsum to clinker(G/C)ratios and added metakaolin to facilitate the formation of ettringite,followed by the measurements of final water contents,dry densities and strengths in accordance with ASTM standards as well as microstructure by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).Results reveal that the gypsum fraction has a significant influence on the index and mechanical properties of the CBSC,and there exists a threshold of the G/C ratio,which is 10%and 15%for clays with 50%and 70%initial water contents,respectively.Beyond which adding excessive gypsum cannot improve the strength further,eliminating the beneficial role.At these thresholds of the G/C ratio,the unconfined compressive strength(UCS)values for clays with 50%and 70%initial water contents are 1.74 MPa and 1.53 MPa at 60 d of curing,respectively.Microstructure characterization shows that,besides the common cementation-induced strengthening,newly formed ettringite also acts as significant pore infills,and the associated remarkable volumetric expansion is responsible,and may be the primary factor,for the beneficial strength gain due to the added gypsum.Moreover,pore-filling ettringite also leads to the conversion of relatively large inter-aggregate to smaller intra-aggregate pores,thereby causing a more homogeneous matrix or solid skeleton with higher strength.Overall,added gypsum plays a vital beneficial role in the strength development of the CBSC,especially for very soft clays.
基金Supported by the Project of the Academic Department of the Chinese Academy of Sciences (KKBE170026)Project of Science and Technology Department of Sinopec (P21039-3,P20049-1)Independent Research and Development Project of Sinopec Petroleum Exploration and Development Research Institute (YK-2021-29-2)。
文摘To investigate the impacts of water/supercritical CO_(2)-rock interaction on the micro-mechanical properties of shale,a series of high-temperature and high-pressure immersion experiments were performed on the calcareous laminated shale samples mined from the lower submember of the third member of Paleogene Shahejie Formation in the Jiyang Depression,Bohai Bay Basin.After that,grid nanoindentation tests were conducted to analyze the influence of immersion time,pressure,and temperature on micro-mechanical parameters.Experimental results show that the damage of shale caused by the water/supercritical CO_(2)-rock interaction was mainly featured by the generation of induced fractures in the clay-rich laminae.In the case of soaking with supercritical CO_(2),the aperture of induced fracture was smaller.Due to the existence of induced fractures,the statistical averages of elastic modulus and hardness both decreased.Meanwhile,compaction and stress-induced tensile fractures could be observed around the laminae.Generally,the longer the soaking time,the higher the soaking pressure and temperature,the more significant the degradation of micro-mechanical parameters is.Compared with water-rock interaction,the supercritical CO_(2)-rock interaction caused a lower degree of mechanical damage on the shale surface.Thus,supercritical CO_(2)can be used as a fracturing fluid to prevent the surface softening of induced fractures in shale reservoirs.
文摘The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51505324,91123036,61471255 and 61474079the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20131402110013the Foundation for Young Scholars of Shanxi Province under Grant No 2014021023-3
文摘The micro-mechanism of the silicon-based waveguide surface smoothing is investigated systematically to explore the effects of silicon-hydrogen bonds on high-temperature hydrogen annealing waveguides. The effect of silicon- hydrogen bonds on the surface migration movement of silicon atoms and the waveguide surface topography are revealed. The micro-migration from an upper state to a lower state of silicon atoms is driven by silicon- hydrogen bonding, which is the key to ameliorate the rough surface morphology of the silicon-based waveguide. The process of hydrogen annealing is experimentally validated based on the simulated parameters. The surface roughness declines from 1.523nm to 0.461 nm.
基金Funded by the National Natural Science Foundation of China(Nos.51108237 and 51178112)
文摘The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
基金Supported by National Nature Science Foundation of China under Grant Nos.40672156 and D0624005the National Basic Research Program (973 Program) under Grant No.2006CB202200
文摘Based on the tortuous-expanding path/channel model,a micro-mechanism model for porous media is developed.The proposed model is expressed as a function of tortuosity,porosity,resistance coefficient,and fluid properties.Every parameter in the proposed model has clear physical meaning.The results show that the model predictions are ingood agreement with those from the existing experimental data.
基金The project is supported by Postdoctoral Science Fund of China and Postdoctoral Fund of Heilongjiang Province.
文摘Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.
基金supported by the National Natural Science Foundation of China (52374014)the Fundamental Research Funds for the Central Universities (2024ZKPYSB03)。
文摘The mechanism of SC-CO_(2)-brine-rock interaction(SCBRI) and its effect on the mechanical properties of shale are crucial for shale oil development and CO_(2)sequestration. To clarify the influence of SCBRI on the micromechanics of shale, the lamina and matrix of shale were saturated with SC-CO_(2)-brine for 2, 4, 6,and 8 days, respectively. The micro-scratch technique was then used to measure the localized fracture toughness before and after SC-CO_(2)-brine saturation. Combining the micro-scratch results with SEM-QEMSCAN-EDS analysis, the differences in mineral composition and mechanical properties of lamina(primarily composed of carbonate minerals) and matrix(primarily composed of clay minerals) were studied. The QEMSCAN analysis and micro-scratch results indicate distinct mineralogical compositions and mechanical properties between the lamina and the matrix. The results showed that:(1) SCBRI leads to the decrease in carbonate mineral content and the significant increase in matrix porosity and laminar cracks. In addition, the damage degree increased at saturation for 6 days.(2) SCBRI weakens the mechanical properties of shale. The scratch depth of laminar and matrix increased by 34.38% and 1.02%, and the fracture toughness decreased by 34.38% and 13.11%. It showed a trend of first increasing and then decreasing.(3) SCBRI enhances the plastic deformation behavior of shale, and the plastic index of lamina and matrix increases by 18.75% and 21.58%, respectively. These results are of great significance for evaluating the mechanical properties of shale oil and gas extraction by CO_(2).
基金Supported by the National Natural Science Foundation of China(52425402,52204021,52404038)Scientific Research Fund of China University of Petroleum(Beijing)(2462022BJRC002).
文摘To elucidate the mechanism by which supercritical CO_(2)(SCCO_(2))-water-shale interactions during CO_(2)energized fracturing influence proppant embedment in lacustrine shale,shale samples from the Bohai Bay Basin were selected for SCCO_(2)-water-shale interaction experiments.X-ray diffraction(XRD),SEM large-area high-resolution imaging,automated mineral identification and characterization system(AMICS),and nanoindentation tests were employed to examine the micro-mechanical damage mechanisms of fracture surfaces and the evolving patterns of proppant embedment characteristics.The results reveal that:Prolonged interaction time reduces the contents of dolomite,feldspar,and clay minerals,while quartz content increases,with dolomite showing the most pronounced dissolution effect.As interaction time increases,the hardness and elasticity modulus of shale follow a power-law decay pattern,with the peak degradation rate occurring at 1 d,followed by a gradual decline of degradation velocity.Increasing interaction time results in growth in both the number and depth of embedment pits on the sample surface.After more than 3 d of interaction,clustered proppant embedment is observed,accompanied by the formation of deep embedment pits on the surface.
基金supported financially by the National Natural Sciene Foundation of China(Nos.51725503 and 51575183)111 Project+4 种基金Zhang XC is also grateful for the support by Shanghai Pujiang ProgramYoung Scholar of the Yangtze River Scholars ProgramShanghai Technology Innovation Program of SHEITC(No.CXY-2015-001)financial supports by Coventry University through the Early Career Researcher-Outgoing Mobility Awardthe East China University of Science and Technology through 111 Project to facilitate this international research collaboration.
文摘A crystal plasticity model is developed to predict the cyclic plasticity during the low-cycle fatigue of GH4169 superalloy.Accumulated plastic slip and energy dissipation as fatigue indicator parameters(FIPs)are used to predict fatigue crack initiation and the fatigue life until failure.Results show that fatigue damage is most likely to initiate at triple points and grain boundaries where severe plastic slip and energy dissipation are present.The predicted fatigue life until failure is within the scatter band of factor 2 when compared with experimental data for the total strain amplitudes ranging from 0.8%to 2.4%.Microscopically,the adjacent grain arrangements and their interactions account for the stress concentration.In addition,different sets of grain orientations with the same total grain numbers of 150 were generated using the present model.Results show that different sets have significant influence on the distribution of stresses between each individual grain at the meso-scale,although little effect is found on the macroscopic length-scale.
基金supported by the EuropeanFP6-IP Project"Integration of Manufacturing Systems for Mass-manufacture of Miniature/Micro-Products(MASMICRO)"
文摘Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes.
基金financially supported by the National Natural Science Foundation of China(Nos.42001053 and 42277147)the General Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352363)the University Natural Science Foundation of Jiangsu Province(No.23KJD130001)。
文摘Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.
文摘Highly conductive fillers have a strong influence on improving the poor out of plane thermal conductivity of carbon fiber reinforced composites. The objective of this study has been to investigate the role of the diamond powder (DP) in enhancing the out-of-plane thermal conductivity of the woven composites. Samples of the standard modulus T300 carbon fiber composite with 44% and 55% fiber volume fraction and the high modulus YS90A carbon fiber composite with 50% volume fraction were fabricated with their matrices comprising of neat epoxy and different loading of diamond powder within epoxy resin. Steady state thermal conductivity measurements were carried out and it was found from the measurements that the out of plane thermal conductivity of the standard modulus composite increased by a factor of 2.3 with 14% volume fraction of diamond powder in the composite while the out of plane thermal conductivity of the high modulus composite increased by a factor of 2.8 with 12% volume fraction of diamond powder in the composite. Finite Element Modeling (FEM) with the incorporation of microstructural characteristics is presented and good consistency between the measurements and FEM results were observed.
文摘A numerical simulation of stochastic damage evolution process in the condition of low cycle fatigue loading is discussed. The relations between damage variables and micro-cracks are obtained by means of the micro-mechanics model of the representative volume element proposed by Lemaitre and Dufailly([10]). The stochastic Initial damage values are introduced in consideration of the inherent micro-defects In materials. The model combined with a finite element method is applied to simulate the damage evolution process under low cycle fatigue loading. The micro-cracks on the sur face of a specimen of 19Mn6 alloy steel are measured with a replica technique. The numerical results show that the nonhomogeneity of damage and the localization of the fatigue failure are well shown by the proposed simulations, and the fatigue lives are reasonably predicted.
基金This study was supported by the State Key Laboratory Project of China(Grant No.KF2020-12)the Yunnan Education Department Project of China(Grant Nos.2020Y0175 and 2020J0240).
文摘To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51979269,51779017,and 41702348)。
文摘To investigate the post-liquefaction shearing behaviour of saturated gravelly soil,laboratory tests were conducted using a staticedynamic multi-purpose triaxial apparatus.In addition,numerical simulations using the discrete element method(DEM)were performed to preliminarily understand the micromechanism of gravelly soil in monotonic loading after liquefaction.The influences of dry density,initial confining stress and degree of liquefaction on the post-liquefaction shearing behaviour of gravelly soil were discussed,and the evolution of the micro-parameters of the granular system was also analysed.The results show that the stressestrain responses of gravelly soil after liquefaction can be divided into three stages:(1)low strength stage,(2)super-linear strength recovery stage,and(3)sublinear strength recovery stage,which are distinctly different from those of the general saturated gravelly soil without previous cyclic loading.The initial state and prior dynamic stress history have significant influences on the post-liquefaction shearing behaviour of gravelly soil.The DEM simulation revealed that the average coordination number sharply increases,the contact normal shows an obvious orientation distribution,and the destroyed force chain backbones are reconstructed in the monotonic reloading process after liquefaction.The evolution of the micro-parameters of the granular system clearly reflects the interior interaction process and micro-mechanisms in the particles during the three different stages of the macro-mechanical behaviour of gravelly soil.