Rock burst is a kind of severe engineering disaster resulted from dynamic fracture process of rocks.The macrofailure behaviors of rocks are primarily formed after experiencing the initiation,propagation,and coalescenc...Rock burst is a kind of severe engineering disaster resulted from dynamic fracture process of rocks.The macrofailure behaviors of rocks are primarily formed after experiencing the initiation,propagation,and coalescenceof micro-cracks.In this paper,the grain-based discretized virtual internal bond model is employed to investigatethe fracturing process of unloaded rock under high in-situ stresses from the micro-fracture perspective.Thesimulated micro-fracturing process reveals that the longitudinal stress waves induced by unloading lead to thevisible unloading effect.The influences of in-situ stresses,mineral grain sizes,and grain heterogeneity on rockmacro and micro fracture are investigated.Micro-crack areas of tensile and shear cracks and micro-crack anglesare statistically analyzed to reveal the rock micro-fracture characteristics.The simulated results indicate thatthe combined effect of the stress state transition and the unloading effect dominates the rock unloading failure.The vertical and horizontal in-situ stresses determine the stress state of surrounding rock after unloading andthe unloading effect,respectively.As the vertical stress increases,the stress level after unloading is higher,andthe shear failure characteristics become more obvious.As the horizontal stress increases,the unloading effectincreases,leading to the intensification of tensile failure.The mineral grain size and grain heterogeneity alsohave nonnegligible influences on rock unloading failure.The micro-fracture perspective provides further insightinto the unloading failure mechanism of deep rock excavation.展开更多
The significance of source rocks for oil and gas accumulation has been indisputably acknowledged.Moreover,it has been gradually realized that there is difference between hydrocarbon generation capacity and hydrocarbon...The significance of source rocks for oil and gas accumulation has been indisputably acknowledged.Moreover,it has been gradually realized that there is difference between hydrocarbon generation capacity and hydrocarbon expulsion capacity,and this has prompted research on hydrocarbon expulsion efficiency.However,these studies dominantly highlight the results of hydrocarbon expulsion,and investigation into the corresponding process and mechanism is primarily from a macroscopic perspective.Despite its wide acceptance as the most direct hydrocarbon expulsion mode,hydrocarbon expulsion through micro-fractures is still not sufficiently understood.Therefore,this study obtains observations and performs experiments on two types of source rocks(mudstones and shales)of the Chang 7 oil group of the Yanchang Formation in Ordos Basin,China.Microscopy reveals that organic matter is non-uniformly distributed in both types of source rocks.Specifically,mudstones are characterized by a cluster-like organic matter distribution,whereas shales are characterized by a layered organic matter distribution.Thermal evolution simulation experiments demonstrate that the hydrocarbon generation process is accompanied by the emergence of micro-fractures,which are favorable for hydrocarbon expulsion.Moreover,based on the theories of rock physics and fracture mechanics,this study establishes micro-fracture development models for both types of source rocks,associated with the calculation of the fracture pressure that is needed for the initiation of fracture development.Furthermore,the relationship between the fluid pressure,fracture pressure,and micro-fracture expansion length during micro-fracture development is quantitatively explored,which helps identify the micro-fracture expansion length.The results indicate that the development of micro-fractures is commonly impacted by the morphology and distribution pattern of the organic matter as well as the mechanical properties of the source rocks.The micro-fractures in turn further affect the hydrocarbon expulsion capacity of the source rocks.The results of this study are expected to provide theoretical and practical guidance for the exploration and exploitation of tight oil and shale oil.展开更多
A two phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and collo...A two phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and colloids. The stress state in colloid region near grains was calculated using Finite Element Method (FEM). The influence of the tensile stresses on the crack initiation and failure process of brittle rock subjected to uniaxial compression was investigated by numerical experiments. The FE results show that tensile stresses are induced easily in the neighboring area of hard grains with the maximum value near grain boundaries. The distribution of tensile stresses depends on the relative position of hard grains. The cracks initiated just near the boundary area of hard grains, which was governed by tensile stress. These results clearly reveal the micro fracture mechanism of brittle rock loaded by uniaxial compression. It can be concluded that the failure mode of brittle rock under uniaxial compression is still tensile fracture from the point view of microstructure. However, since the wide colloid region is still under compressive stress state, further propagation of boundary cracks through this region obviously needs more external load, thus causing the uniaxial compressive strength of rock much higher than its tensile strength obtained via Brazilian (splitting)展开更多
Tight and unconventional reservoirs have become the focus with the progress of petroleum exploration and development.Micro-fractures in these reservoirs can effectively improve reservoir permeability,and well-develope...Tight and unconventional reservoirs have become the focus with the progress of petroleum exploration and development.Micro-fractures in these reservoirs can effectively improve reservoir permeability,and well-developed micro-fractures can serve to directly improve productivity.Compared with the centered electrical well logging method,the Micro Spherical Focused Logging(MSFL)is more suitable for microfracture identification due to its high resolution and near borehole wall measuring method.In this study,an anisotropic model is used to depict micro-fractured formation.First,a forward model with microfractured formation,borehole,logging instrument and surrounding rock is established.Subsequently,MSFL responses under different micro-fracture porosity,resistivity,dip angle and borehole radius,are calculated based on the finite element method(FEM).Finally,the MSFL responses under different microfracture parameters are analyzed with the response laws clarified.展开更多
Micro-fractures are developed in volcanic layers of Cretaceous Yingcheng Fm in the deep part of Xujiaweizi fault depression,Songliao Basin.In the process of well drilling,various complex problems happen,such as boreho...Micro-fractures are developed in volcanic layers of Cretaceous Yingcheng Fm in the deep part of Xujiaweizi fault depression,Songliao Basin.In the process of well drilling,various complex problems happen,such as borehole wall slabbing and collapse and serious fluid leakage.Based on conventional drilling fluid plugging evaluation methods,the real situations cannot be presented accurately,especially in fracture feature simulation and plugging effect evaluation.Therefore,a specific micro-fracture plugging evaluation method was put forward especially for high-temperature deep wells in the paper.It is a new type of micro-fracture core model with the fracture apertures in the range of 1-50 mm.It is made of aluminosilicate that is compositionally close to natural rocks.It is good in repeatability with fracture-surface roughness,pore development and fracture-surface morphology close to natural fractures.Obviously,this new model makes up for the deficiencies of the conventional methods.A new micro-fracture plugging evaluation instrument was independently designed with operating temperature of 200℃ and operating pressure of 3.5-5.0 MPa.It can be used to simulate the flow regime of downhole operating fluids,with the advantages of low drilling fluid consumption,convenient operation and low cost.The plugging capacity of the organo-silicone drilling fluid system was evaluated by using this instrument.It is shown that the grain size distribution of the drilling fluid is improved and its anti-collapse capacity is enhanced.Based on the field test in Well XSP-3,the safe drilling problems in volcanic layers with developed micro-fractures are effectively solved by using the drilling fluid formula which is optimized by means of this evaluation method.And the safe drilling is guaranteed in the deep fractured formations in this area.展开更多
Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- ...Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of:(1) the in-situ stress ratio;(2) internal friction angle of random fractures;(3) cohesion of random fractures;(4) operational variables such as injection rate; and(5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.展开更多
By integrating laboratory physical modeling experiments with machine learning-based analysis of dominant factors,this study explored the feasibility of pulse hydraulic fracturing(PHF)in deep coal rocks and revealed th...By integrating laboratory physical modeling experiments with machine learning-based analysis of dominant factors,this study explored the feasibility of pulse hydraulic fracturing(PHF)in deep coal rocks and revealed the fracture propagation patterns and the mechanisms of pulsating loading in the process.The results show that PHF induces fatigue damage in coal matrix,significantly reducing breakdown pressure and increasing fracture network volume.Lower vertical stress differential coefficient(less than 0.31),lower peak pressure ratio(less than 0.9),higher horizontal stress differential coefficient(greater than 0.13),higher pulse amplitude ratio(greater than or equal to 0.5)and higher pulse frequency(greater than or equal to 3 Hz)effectively decrease the breakdown pressure.Conversely,higher vertical stress differential coefficient(greater than or equal to 0.31),higher pulse amplitude ratio(greater than or equal to 0.5),lower horizontal stress differential coefficient(less than or equal to 0.13),lower peak pressure ratio(less than 0.9),and lower pulse frequency(less than 3 Hz)promote the formation of a complex fracture network.Vertical stress and peak pressure are the most critical geological and engineering parameters affecting the stimulation effectiveness of PHF.The dominant mechanism varies with coal rank due to differences in geomechanical characteristics and natural fracture development.Low-rank coal primarily exhibits matrix strength degradation.High-rank coal mainly involves the activation of natural fractures and bedding planes.Medium-rank coal shows a coexistence of matrix strength degradation and micro-fracture connectivity.The PHF forms complex fracture networks through the dual mechanism of matrix strength degradation and fracture network connectivity enhancement.展开更多
Stimulation of unconsolidated formations via horizontal wells has seen its vast implementation in the recent development of heavy oil reservoir to save the time and cost of preheating the reservoir before the steam-as...Stimulation of unconsolidated formations via horizontal wells has seen its vast implementation in the recent development of heavy oil reservoir to save the time and cost of preheating the reservoir before the steam-assisted gravity drainage(SAGD)process.A mathematical approach was proposed in this research that fully couples the hydraulic,mechanical and thermal responses of unconsolidated sandstone formations and also applies failure criteria for describing either shear dilation or tensile parting mechanism that generates microcracks.The approach was implemented to predict the porothermoelastic response of a pair of SAGD wells subject to injection and subsequent micro-fracturing using hot water.It was found that the predicted bottom hole pressures(BHPs)match closely with the field observed data.An elliptical dilation zone developed around the dual wells with relatively high pore pressure,porosity,permeability and temperature,implying good interwell hydraulic communication between both wells.The activation of microcracks dramatically accelerated the dissipation of pore pressure across the entire formation depth and also facilitated heat convection in between the dual wells,though to a lesser extent.In summary,the approach provides a convenient means to assist field engineers in the optimization of injection efficiency and evaluation of interference among multiple horizontal wells.展开更多
A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in pol...A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Based on a sample of some real earthquakes,we have suggested in previous papers that there is a density-tectonic stress wave with ultra-low frequency which is emitted from the epicenter region for months before earthq...Based on a sample of some real earthquakes,we have suggested in previous papers that there is a density-tectonic stress wave with ultra-low frequency which is emitted from the epicenter region for months before earthquakes,and a micro-fracture wave 1 ~ 10 days before earthquakes. The former has been observed by different kinds of measurements and the latter has been observed by a few chance observations which consists of electromagnetic,gravitational and sonic fluctuations. We show real observational results that depict the two waves and they have very different frequencies,which are not difficult to discriminate. The classical elastic-rebound model is one of the most influential theories on earthquakes,and the thermodynamic elastic-rebound model has amended the classical framework. Considering the two waves above,we attempt to further modify the elasticrebound model,and the new framework could be called the "micro-fracture elasticrebound model". We infer that tectonic earthquakes could have three special phases: the accumulation of tectonic stress,micro-fracture,and main-fracture. Accordingly,there would be three waves which come from the epicenter of a tectonic earthquake,i. e. ,the tectonic stress wave with ultra-low frequency a few months before the earthquake,the micro-fracture wave about 1 ~ 10 days before the earthquake and the main-fracture wave (common earthquake wave).展开更多
As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law a...As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering.展开更多
To investigate microstructure failure in ferrite-martensite dual phase steel,in-situ observations were performed on multiple plate DP800 specimens during uniaxial tensile tests. Microstructure evolution of the observe...To investigate microstructure failure in ferrite-martensite dual phase steel,in-situ observations were performed on multiple plate DP800 specimens during uniaxial tensile tests. Microstructure evolution of the observed region was investigated in details. The experimental data showed that micro-cracks in various regions differed in the initiation time,and micro-failures mainly occurred from the locations with typical characteristics of stress concentration( i. e. ferrite interiors,the interfaces of ferrite-martensite grains and the martensite-martensite interfaces). Growth of micro-crack generally experienced the following stages: cracking from martensite boundaries,tiny particles in ferrite interiors,or martensite interiors,propagating in ferrite,bypassing martensite boundaries,or passing through martensite-martensite interfaces,finally ending on martensite boundaries. Martensite was one important source of micro-failure and changed the propagation of micro-cracks significantly. Microstructure deformation was inhomogeneous in the stage of plastic deformation.展开更多
As for ultra-low permeability reservoir,the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops.Combined with non-linear porous f...As for ultra-low permeability reservoir,the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops.Combined with non-linear porous flow characteristics,the concept of dimensionless pressure sweep efficiency and deliverability index are put forward to evaluate the physical models' well pattern adaptability.Through experiments,the models' pressure distribution is measured and on which basis,the pressure gradient fields are drawn and the porous flow regions of these models are divided into dead oil region,non-linear porous flow region,and quasi-linear porous flow region with the help of twin-core non-linear porous flow curve.The results indicate that rectangular well pattern in fracture reservoirs has the best adaptability,while the worst is inverted nine-spot equilateral well pattern.With the increase of drawdown pressure,dead oil region decreases,pressure sweep efficiency and deliverability index increase; meantime,the deliverability index of rectangular well pattern has much more rational increase.Under the same drawdown pressure,the rectangular well pattern has the largest pressure sweep efficiency.展开更多
Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging p...Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging per-meability by using primiparity data of oil field. This method has been successfully applied to revise logging permeability of micro-fractured low-permeability sand reservoir in Baiyushan area of Jing’An oil field, which shows that the method is reliable because the geological model building through the permeability which has been handled by this method accords with the real reservoir significantly.展开更多
It is difficult to stimulate coal reservoirs in physical approaches,and the recovery factor of coalbed methane(CBM)can be enhanced by applying strong oxidizers through oxidation to stimulate coal reservoirs.At present...It is difficult to stimulate coal reservoirs in physical approaches,and the recovery factor of coalbed methane(CBM)can be enhanced by applying strong oxidizers through oxidation to stimulate coal reservoirs.At present,however,there have been very few studies on the oxidation of CBM and fewer experimental studies for systematically evaluating the effect of oxidation on the seepage capacity of coal reservoirs.In this paper,the coal samples taken from coal seams of the Jurassic Xishanyao Formation in the Heishan Coal Mine,Toksun,Xinjiang,were selected as the study objects.Hydrogen peroxide solution immersion experiments were carried out on columnar and powdered coal samples,respectively to measure the permeability of columnar coal samples,the dissolution rate of powdered coal samples and the property parameters of hydrogen peroxide solution.Then,the reaction mechanisms between coal samples and hydrogen peroxide and the mechanisms to improve the seepage capacity of coal reservoirs were analyzed by means of X-ray diffraction(XRD),scanning electron microscope(SEM),infrared spectrum and wetting angle measurement.Finally,the stimulation effect of oxidation was compared with that of acidification.The following research results were obtained.(1)The permeability of coal samples is increased significantly after oxidation to 1.4–3.2 times the original permeability.(2)A large number of micro-fractures and dissolved pores are formed in the coal samples after oxidation,and consequently pore connectivity is improved greatly.Thus,the amount of associative hydroxyl and carboxyl functional groups on the surface of the coal samples increases,and the water wettability on the surface reduces.(3)Organic matters and pyrites are oxidized and consumed easily,and the generated H+and micro-molecular aliphatic acids further dissolve inorganic mineral components.(4)Oxidation also has the advantage of acidification for dissolving inorganic mineral components,so there is a low and controllable probability of generating coal powder.In conclusion,applying strong oxidizers has the potential to become a new technology for coal reservoir stimulation.展开更多
Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with...Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with medium-scale samples, we have studied the effect of fault jogs, the most common irregularity along fault zones, on frictional behavior. The research indicates that extensional fault jog can be easily fractured because of its low strength and the fractured jog has no obvious resistance to fault sliding, and the micro-fractures occurring in the jog are indicative of stick-slip along the faults. The fault zone containing extensional jogs is characterized by velocity weakening and can be described by rate and state friction law. Compressional fault jog makes fault sliding more difficult because of its high fracturing strength, but the micro-fractures occurring in the tensile areas around fault ends at higher stress level can provide necessary condition for occurrence of stick-slip along the faults before the jog is fractured and thus act as precursors of fault instability. Compression jog can be taken as a stable indicator of fault segmentation until the jog is completely fractured and two faults are linked.展开更多
Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such r...Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such reservoirs is mainly determined by micro-fractures, but conventional laboratory experimentalmethods are difficult to measure it, which is attribute to the dynamic cracking of these micro-fractures.The emerging digital core technology in recent years can solve this problem by developing an accuratepore network model and a rational simulation approach. In this study, a novel pore-fracture dualnetwork model was established based on percolation theory. Fluid flow in the pore of two scales, microfracture and matrix pore, were considered, also with the impact of micro-fracture opening and closingduring flow. Some seepage characteristic parameters, such as fluid saturations, capillary pressure, relative permeabilities, displacement efficiency in different flow stage, can be predicted by proposedcalculating method. Through these work, seepage characteristics of dual porous media can be achieved.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12302501)the China Postdoctoral Science Foun-dation(Grant No.2023MD744236)+4 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2024JC-YBQN-0061)the Postdoctoral Research Project of Shaanxi Province(Grant No.2023BSHEDZZ270)the Special Scientific Research Plan Project of Education Department of Shaanxi Provincial Government(Grant No.23JK0509)the Scientific Research Foundation for Excellent Returned Overseas Chinese Schol-ars funded by Shaanxi Provincial Government(Grant No.2023-021)the Innovation and Entrepreneurship Projects for College Students(Grant No.S202310703047).
文摘Rock burst is a kind of severe engineering disaster resulted from dynamic fracture process of rocks.The macrofailure behaviors of rocks are primarily formed after experiencing the initiation,propagation,and coalescenceof micro-cracks.In this paper,the grain-based discretized virtual internal bond model is employed to investigatethe fracturing process of unloaded rock under high in-situ stresses from the micro-fracture perspective.Thesimulated micro-fracturing process reveals that the longitudinal stress waves induced by unloading lead to thevisible unloading effect.The influences of in-situ stresses,mineral grain sizes,and grain heterogeneity on rockmacro and micro fracture are investigated.Micro-crack areas of tensile and shear cracks and micro-crack anglesare statistically analyzed to reveal the rock micro-fracture characteristics.The simulated results indicate thatthe combined effect of the stress state transition and the unloading effect dominates the rock unloading failure.The vertical and horizontal in-situ stresses determine the stress state of surrounding rock after unloading andthe unloading effect,respectively.As the vertical stress increases,the stress level after unloading is higher,andthe shear failure characteristics become more obvious.As the horizontal stress increases,the unloading effectincreases,leading to the intensification of tensile failure.The mineral grain size and grain heterogeneity alsohave nonnegligible influences on rock unloading failure.The micro-fracture perspective provides further insightinto the unloading failure mechanism of deep rock excavation.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41572137,41872165)National Science and Technology Major Project of China(Grant No.2017ZX05001002-003)Research and Innovation fund for Graduate Students of Southwest Petroleum University(Grant No.2019cxyb006)。
文摘The significance of source rocks for oil and gas accumulation has been indisputably acknowledged.Moreover,it has been gradually realized that there is difference between hydrocarbon generation capacity and hydrocarbon expulsion capacity,and this has prompted research on hydrocarbon expulsion efficiency.However,these studies dominantly highlight the results of hydrocarbon expulsion,and investigation into the corresponding process and mechanism is primarily from a macroscopic perspective.Despite its wide acceptance as the most direct hydrocarbon expulsion mode,hydrocarbon expulsion through micro-fractures is still not sufficiently understood.Therefore,this study obtains observations and performs experiments on two types of source rocks(mudstones and shales)of the Chang 7 oil group of the Yanchang Formation in Ordos Basin,China.Microscopy reveals that organic matter is non-uniformly distributed in both types of source rocks.Specifically,mudstones are characterized by a cluster-like organic matter distribution,whereas shales are characterized by a layered organic matter distribution.Thermal evolution simulation experiments demonstrate that the hydrocarbon generation process is accompanied by the emergence of micro-fractures,which are favorable for hydrocarbon expulsion.Moreover,based on the theories of rock physics and fracture mechanics,this study establishes micro-fracture development models for both types of source rocks,associated with the calculation of the fracture pressure that is needed for the initiation of fracture development.Furthermore,the relationship between the fluid pressure,fracture pressure,and micro-fracture expansion length during micro-fracture development is quantitatively explored,which helps identify the micro-fracture expansion length.The results indicate that the development of micro-fractures is commonly impacted by the morphology and distribution pattern of the organic matter as well as the mechanical properties of the source rocks.The micro-fractures in turn further affect the hydrocarbon expulsion capacity of the source rocks.The results of this study are expected to provide theoretical and practical guidance for the exploration and exploitation of tight oil and shale oil.
文摘A two phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and colloids. The stress state in colloid region near grains was calculated using Finite Element Method (FEM). The influence of the tensile stresses on the crack initiation and failure process of brittle rock subjected to uniaxial compression was investigated by numerical experiments. The FE results show that tensile stresses are induced easily in the neighboring area of hard grains with the maximum value near grain boundaries. The distribution of tensile stresses depends on the relative position of hard grains. The cracks initiated just near the boundary area of hard grains, which was governed by tensile stress. These results clearly reveal the micro fracture mechanism of brittle rock loaded by uniaxial compression. It can be concluded that the failure mode of brittle rock under uniaxial compression is still tensile fracture from the point view of microstructure. However, since the wide colloid region is still under compressive stress state, further propagation of boundary cracks through this region obviously needs more external load, thus causing the uniaxial compressive strength of rock much higher than its tensile strength obtained via Brazilian (splitting)
基金This research is funded by SINOPEC Group Project P20039-2.
文摘Tight and unconventional reservoirs have become the focus with the progress of petroleum exploration and development.Micro-fractures in these reservoirs can effectively improve reservoir permeability,and well-developed micro-fractures can serve to directly improve productivity.Compared with the centered electrical well logging method,the Micro Spherical Focused Logging(MSFL)is more suitable for microfracture identification due to its high resolution and near borehole wall measuring method.In this study,an anisotropic model is used to depict micro-fractured formation.First,a forward model with microfractured formation,borehole,logging instrument and surrounding rock is established.Subsequently,MSFL responses under different micro-fracture porosity,resistivity,dip angle and borehole radius,are calculated based on the finite element method(FEM).Finally,the MSFL responses under different microfracture parameters are analyzed with the response laws clarified.
基金Project supported by CNPC Scientific Research and Technical Development Project“Research and Application of Supporting Drilling/Completion Techniques for Wells Treated with Special Technologies”(Grant No.2013T-0308-001).
文摘Micro-fractures are developed in volcanic layers of Cretaceous Yingcheng Fm in the deep part of Xujiaweizi fault depression,Songliao Basin.In the process of well drilling,various complex problems happen,such as borehole wall slabbing and collapse and serious fluid leakage.Based on conventional drilling fluid plugging evaluation methods,the real situations cannot be presented accurately,especially in fracture feature simulation and plugging effect evaluation.Therefore,a specific micro-fracture plugging evaluation method was put forward especially for high-temperature deep wells in the paper.It is a new type of micro-fracture core model with the fracture apertures in the range of 1-50 mm.It is made of aluminosilicate that is compositionally close to natural rocks.It is good in repeatability with fracture-surface roughness,pore development and fracture-surface morphology close to natural fractures.Obviously,this new model makes up for the deficiencies of the conventional methods.A new micro-fracture plugging evaluation instrument was independently designed with operating temperature of 200℃ and operating pressure of 3.5-5.0 MPa.It can be used to simulate the flow regime of downhole operating fluids,with the advantages of low drilling fluid consumption,convenient operation and low cost.The plugging capacity of the organo-silicone drilling fluid system was evaluated by using this instrument.It is shown that the grain size distribution of the drilling fluid is improved and its anti-collapse capacity is enhanced.Based on the field test in Well XSP-3,the safe drilling problems in volcanic layers with developed micro-fractures are effectively solved by using the drilling fluid formula which is optimized by means of this evaluation method.And the safe drilling is guaranteed in the deep fractured formations in this area.
基金supported by the National Natural Science Foundation of China(Grant Nos.4122790141330643&41502294)+2 种基金China Postdoctoral Science Foundation Funded Project(Grants No.2015M571118)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB10030000XDB10030300&XDB10050400)
文摘Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of:(1) the in-situ stress ratio;(2) internal friction angle of random fractures;(3) cohesion of random fractures;(4) operational variables such as injection rate; and(5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.
基金Supported by the National Natural Science Foundation of China(52274014,52421002).
文摘By integrating laboratory physical modeling experiments with machine learning-based analysis of dominant factors,this study explored the feasibility of pulse hydraulic fracturing(PHF)in deep coal rocks and revealed the fracture propagation patterns and the mechanisms of pulsating loading in the process.The results show that PHF induces fatigue damage in coal matrix,significantly reducing breakdown pressure and increasing fracture network volume.Lower vertical stress differential coefficient(less than 0.31),lower peak pressure ratio(less than 0.9),higher horizontal stress differential coefficient(greater than 0.13),higher pulse amplitude ratio(greater than or equal to 0.5)and higher pulse frequency(greater than or equal to 3 Hz)effectively decrease the breakdown pressure.Conversely,higher vertical stress differential coefficient(greater than or equal to 0.31),higher pulse amplitude ratio(greater than or equal to 0.5),lower horizontal stress differential coefficient(less than or equal to 0.13),lower peak pressure ratio(less than 0.9),and lower pulse frequency(less than 3 Hz)promote the formation of a complex fracture network.Vertical stress and peak pressure are the most critical geological and engineering parameters affecting the stimulation effectiveness of PHF.The dominant mechanism varies with coal rank due to differences in geomechanical characteristics and natural fracture development.Low-rank coal primarily exhibits matrix strength degradation.High-rank coal mainly involves the activation of natural fractures and bedding planes.Medium-rank coal shows a coexistence of matrix strength degradation and micro-fracture connectivity.The PHF forms complex fracture networks through the dual mechanism of matrix strength degradation and fracture network connectivity enhancement.
基金the financial support from the National Major Science and Technology Projects of China(Grant No.2017ZX05009-003)the National Natural Science Foundation of China(No.51404281)
文摘Stimulation of unconsolidated formations via horizontal wells has seen its vast implementation in the recent development of heavy oil reservoir to save the time and cost of preheating the reservoir before the steam-assisted gravity drainage(SAGD)process.A mathematical approach was proposed in this research that fully couples the hydraulic,mechanical and thermal responses of unconsolidated sandstone formations and also applies failure criteria for describing either shear dilation or tensile parting mechanism that generates microcracks.The approach was implemented to predict the porothermoelastic response of a pair of SAGD wells subject to injection and subsequent micro-fracturing using hot water.It was found that the predicted bottom hole pressures(BHPs)match closely with the field observed data.An elliptical dilation zone developed around the dual wells with relatively high pore pressure,porosity,permeability and temperature,implying good interwell hydraulic communication between both wells.The activation of microcracks dramatically accelerated the dissipation of pore pressure across the entire formation depth and also facilitated heat convection in between the dual wells,though to a lesser extent.In summary,the approach provides a convenient means to assist field engineers in the optimization of injection efficiency and evaluation of interference among multiple horizontal wells.
文摘A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘Based on a sample of some real earthquakes,we have suggested in previous papers that there is a density-tectonic stress wave with ultra-low frequency which is emitted from the epicenter region for months before earthquakes,and a micro-fracture wave 1 ~ 10 days before earthquakes. The former has been observed by different kinds of measurements and the latter has been observed by a few chance observations which consists of electromagnetic,gravitational and sonic fluctuations. We show real observational results that depict the two waves and they have very different frequencies,which are not difficult to discriminate. The classical elastic-rebound model is one of the most influential theories on earthquakes,and the thermodynamic elastic-rebound model has amended the classical framework. Considering the two waves above,we attempt to further modify the elasticrebound model,and the new framework could be called the "micro-fracture elasticrebound model". We infer that tectonic earthquakes could have three special phases: the accumulation of tectonic stress,micro-fracture,and main-fracture. Accordingly,there would be three waves which come from the epicenter of a tectonic earthquake,i. e. ,the tectonic stress wave with ultra-low frequency a few months before the earthquake,the micro-fracture wave about 1 ~ 10 days before the earthquake and the main-fracture wave (common earthquake wave).
基金support from the National Natural Science Foundation of China(Nos.51974173 and 52004147)the Natural Science Foundation of Shandong Province(Nos.ZR2020QD122 and ZR2020QE129).
文摘As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering.
基金supported by the National Natural Science Foundation of China(51375307 )the Anhui University Provincial Natural Science Research Project(KJ2016A181 )+1 种基金the Key Discipline Team(AKZDXK2015C03)High Level Talent Research Project of Anhui Science and Technology University(ZRC2014464)
文摘To investigate microstructure failure in ferrite-martensite dual phase steel,in-situ observations were performed on multiple plate DP800 specimens during uniaxial tensile tests. Microstructure evolution of the observed region was investigated in details. The experimental data showed that micro-cracks in various regions differed in the initiation time,and micro-failures mainly occurred from the locations with typical characteristics of stress concentration( i. e. ferrite interiors,the interfaces of ferrite-martensite grains and the martensite-martensite interfaces). Growth of micro-crack generally experienced the following stages: cracking from martensite boundaries,tiny particles in ferrite interiors,or martensite interiors,propagating in ferrite,bypassing martensite boundaries,or passing through martensite-martensite interfaces,finally ending on martensite boundaries. Martensite was one important source of micro-failure and changed the propagation of micro-cracks significantly. Microstructure deformation was inhomogeneous in the stage of plastic deformation.
基金Project(2011ZX05013-006)supported by the National Science and Technology Project of China
文摘As for ultra-low permeability reservoir,the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops.Combined with non-linear porous flow characteristics,the concept of dimensionless pressure sweep efficiency and deliverability index are put forward to evaluate the physical models' well pattern adaptability.Through experiments,the models' pressure distribution is measured and on which basis,the pressure gradient fields are drawn and the porous flow regions of these models are divided into dead oil region,non-linear porous flow region,and quasi-linear porous flow region with the help of twin-core non-linear porous flow curve.The results indicate that rectangular well pattern in fracture reservoirs has the best adaptability,while the worst is inverted nine-spot equilateral well pattern.With the increase of drawdown pressure,dead oil region decreases,pressure sweep efficiency and deliverability index increase; meantime,the deliverability index of rectangular well pattern has much more rational increase.Under the same drawdown pressure,the rectangular well pattern has the largest pressure sweep efficiency.
文摘Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging per-meability by using primiparity data of oil field. This method has been successfully applied to revise logging permeability of micro-fractured low-permeability sand reservoir in Baiyushan area of Jing’An oil field, which shows that the method is reliable because the geological model building through the permeability which has been handled by this method accords with the real reservoir significantly.
基金supported by National Natural Science Foundation of China-General Program“Study on acceleration of gas transmission by enhancing permeability through organic-rich shale fracturing due to oxidation”(No.:51674209).
文摘It is difficult to stimulate coal reservoirs in physical approaches,and the recovery factor of coalbed methane(CBM)can be enhanced by applying strong oxidizers through oxidation to stimulate coal reservoirs.At present,however,there have been very few studies on the oxidation of CBM and fewer experimental studies for systematically evaluating the effect of oxidation on the seepage capacity of coal reservoirs.In this paper,the coal samples taken from coal seams of the Jurassic Xishanyao Formation in the Heishan Coal Mine,Toksun,Xinjiang,were selected as the study objects.Hydrogen peroxide solution immersion experiments were carried out on columnar and powdered coal samples,respectively to measure the permeability of columnar coal samples,the dissolution rate of powdered coal samples and the property parameters of hydrogen peroxide solution.Then,the reaction mechanisms between coal samples and hydrogen peroxide and the mechanisms to improve the seepage capacity of coal reservoirs were analyzed by means of X-ray diffraction(XRD),scanning electron microscope(SEM),infrared spectrum and wetting angle measurement.Finally,the stimulation effect of oxidation was compared with that of acidification.The following research results were obtained.(1)The permeability of coal samples is increased significantly after oxidation to 1.4–3.2 times the original permeability.(2)A large number of micro-fractures and dissolved pores are formed in the coal samples after oxidation,and consequently pore connectivity is improved greatly.Thus,the amount of associative hydroxyl and carboxyl functional groups on the surface of the coal samples increases,and the water wettability on the surface reduces.(3)Organic matters and pyrites are oxidized and consumed easily,and the generated H+and micro-molecular aliphatic acids further dissolve inorganic mineral components.(4)Oxidation also has the advantage of acidification for dissolving inorganic mineral components,so there is a low and controllable probability of generating coal powder.In conclusion,applying strong oxidizers has the potential to become a new technology for coal reservoir stimulation.
基金the National Basic Research Program of China (Grant No. 2004CB418405)National Key Technologies R&D Program (Grant No. 2006BAC01B03)
文摘Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with medium-scale samples, we have studied the effect of fault jogs, the most common irregularity along fault zones, on frictional behavior. The research indicates that extensional fault jog can be easily fractured because of its low strength and the fractured jog has no obvious resistance to fault sliding, and the micro-fractures occurring in the jog are indicative of stick-slip along the faults. The fault zone containing extensional jogs is characterized by velocity weakening and can be described by rate and state friction law. Compressional fault jog makes fault sliding more difficult because of its high fracturing strength, but the micro-fractures occurring in the tensile areas around fault ends at higher stress level can provide necessary condition for occurrence of stick-slip along the faults before the jog is fractured and thus act as precursors of fault instability. Compression jog can be taken as a stable indicator of fault segmentation until the jog is completely fractured and two faults are linked.
基金The writers greatly appreciate the financial support of the Major Special Project of PetroChina Co Ltd.(2017E-0406)the National Science and Technology Major Project during the 13th Five-year Plan Period(2016ZX05010-00504).
文摘Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such reservoirs is mainly determined by micro-fractures, but conventional laboratory experimentalmethods are difficult to measure it, which is attribute to the dynamic cracking of these micro-fractures.The emerging digital core technology in recent years can solve this problem by developing an accuratepore network model and a rational simulation approach. In this study, a novel pore-fracture dualnetwork model was established based on percolation theory. Fluid flow in the pore of two scales, microfracture and matrix pore, were considered, also with the impact of micro-fracture opening and closingduring flow. Some seepage characteristic parameters, such as fluid saturations, capillary pressure, relative permeabilities, displacement efficiency in different flow stage, can be predicted by proposedcalculating method. Through these work, seepage characteristics of dual porous media can be achieved.