Primitive neuroectodermal tumor (PNET) of the pancreas is an extremely rare tumor that usually occurs in children or young adults. We report a case of a 33-year-old male patient with an 18 cm × 18 cm × 16 cm...Primitive neuroectodermal tumor (PNET) of the pancreas is an extremely rare tumor that usually occurs in children or young adults. We report a case of a 33-year-old male patient with an 18 cm × 18 cm × 16 cm mass arising from the pancreatic body and tail with a one- day history of abdominal pain. Initial CT scan showed no signs of metastatic tumor spread. The tumor caused intrabdominal bleeding and the patient underwent primary tumor resection including partial gastrectomy, left pancreatic resection and splenectomy. Diagnosis of PNET was confi rmed by histology, immunohistochemistry and FISH analysis. All neoplastic cells were stained positive for MIC2-protein (CD99). Approximately one month after surgery, several liver metastases were observed and the patient underwent chemotherapy according to the Euro- Ewing protocol. Subsequent relaparotomy excluded any residual hepatic or extrahepatic abdominal metastases. Although PNET in the pancreas is an extremely rare entity, it should be considered in the diffential diagnosis of pancreatic masses, especially in young patients. This alarming case particularly illustrates that PNET in the pancreas although in an advanced stage can present with only a short history of mild symptoms.展开更多
The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are...The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)^(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)^(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol.展开更多
文摘Primitive neuroectodermal tumor (PNET) of the pancreas is an extremely rare tumor that usually occurs in children or young adults. We report a case of a 33-year-old male patient with an 18 cm × 18 cm × 16 cm mass arising from the pancreatic body and tail with a one- day history of abdominal pain. Initial CT scan showed no signs of metastatic tumor spread. The tumor caused intrabdominal bleeding and the patient underwent primary tumor resection including partial gastrectomy, left pancreatic resection and splenectomy. Diagnosis of PNET was confi rmed by histology, immunohistochemistry and FISH analysis. All neoplastic cells were stained positive for MIC2-protein (CD99). Approximately one month after surgery, several liver metastases were observed and the patient underwent chemotherapy according to the Euro- Ewing protocol. Subsequent relaparotomy excluded any residual hepatic or extrahepatic abdominal metastases. Although PNET in the pancreas is an extremely rare entity, it should be considered in the diffential diagnosis of pancreatic masses, especially in young patients. This alarming case particularly illustrates that PNET in the pancreas although in an advanced stage can present with only a short history of mild symptoms.
基金Project supported by the National Natural Science Foundation of China.
文摘The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)^(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)^(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol.