期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MIC-BBO-SVM的大坝渗流预测模型
被引量:
11
1
作者
刘泽
章光
+1 位作者
李伟林
胡少华
《中国安全生产科学技术》
CAS
CSCD
北大核心
2020年第11期12-18,共7页
为监控大坝运行过程中的异常状态,准确预测大坝渗流量的变化趋势,采用最大信息系数(MIC)量化渗流量与影响因子之间的相关性大小并从中选取主导因子作为输入变量,通过引入生物地理学优化算法(BBO)并以K折交叉验证意义下的平均均方根误差...
为监控大坝运行过程中的异常状态,准确预测大坝渗流量的变化趋势,采用最大信息系数(MIC)量化渗流量与影响因子之间的相关性大小并从中选取主导因子作为输入变量,通过引入生物地理学优化算法(BBO)并以K折交叉验证意义下的平均均方根误差为损失函数来优化支持向量机(SVM)作为预测模型,以某水电站工程的拦河大坝为例进行模型验证。结果表明:MIC-BBO-SVM模型的拟合优度、均方根误差、平均绝对误差和平均绝对百分比误差分别为0.9575,0.1550 m^3/h,0.1356 m^3/h,11.51%,预测性能明显优于逐步回归模型、SVM模型和MIC-SVM模型,可为大坝渗流安全监测提供参考与借鉴。
展开更多
关键词
安全监测
渗流量
因子优选
mic-bbo-svm
预测精度
在线阅读
下载PDF
职称材料
题名
基于MIC-BBO-SVM的大坝渗流预测模型
被引量:
11
1
作者
刘泽
章光
李伟林
胡少华
机构
武汉理工大学安全科学与应急管理学院
国家大坝安全工程技术研究中心
出处
《中国安全生产科学技术》
CAS
CSCD
北大核心
2020年第11期12-18,共7页
基金
国家大坝安全工程技术研究中心开放基金项目(CX2019B014)
国家自然科学基金项目(51979208)
国家“十三五”重点研发计划重点专项项目(2017YFC0804600)。
文摘
为监控大坝运行过程中的异常状态,准确预测大坝渗流量的变化趋势,采用最大信息系数(MIC)量化渗流量与影响因子之间的相关性大小并从中选取主导因子作为输入变量,通过引入生物地理学优化算法(BBO)并以K折交叉验证意义下的平均均方根误差为损失函数来优化支持向量机(SVM)作为预测模型,以某水电站工程的拦河大坝为例进行模型验证。结果表明:MIC-BBO-SVM模型的拟合优度、均方根误差、平均绝对误差和平均绝对百分比误差分别为0.9575,0.1550 m^3/h,0.1356 m^3/h,11.51%,预测性能明显优于逐步回归模型、SVM模型和MIC-SVM模型,可为大坝渗流安全监测提供参考与借鉴。
关键词
安全监测
渗流量
因子优选
mic-bbo-svm
预测精度
Keywords
safety monitoring
seepage flow
factor optimization
mic-bbo-svm
prediction accuracy
分类号
X959 [环境科学与工程—安全科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MIC-BBO-SVM的大坝渗流预测模型
刘泽
章光
李伟林
胡少华
《中国安全生产科学技术》
CAS
CSCD
北大核心
2020
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部