Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphas...Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)展开更多
Up to now, no a real full-cover liquid metal (LM) free surface flow have been successfully used in magnetic fusion devices as MHD instability and unavoidable rivulet flow. Recently, after we carried out a guidable fre...Up to now, no a real full-cover liquid metal (LM) free surface flow have been successfully used in magnetic fusion devices as MHD instability and unavoidable rivulet flow. Recently, after we carried out a guidable free curve-surface flow on theoretically and experimentally, seeking for other way to get a full-cover free surface flow is also in implementing. The superficial layer MHD effect in free surface flow is experimentally observed. After compared and analyzed the characteristic parameters of the free surface flow, the conditions of full-cover free surface flow are found. Meanwhile, the new two parameters of surface cover ratio and rivulet flow index are introduced to characterize the flowing characteristic of the full-cover free surface flow under magnetic field. According to the analysis rule, for different liquid metal, there are the different unique conditions to meet full-cover free surface flow under magnetic field. This may be a way to solve free surface flow major MHD key issue for LM PFCs.展开更多
This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical p...This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient.展开更多
The Soret and Dufour effects on unsteady MHD mixed convection flow past an infinite radiative vertical porous plate embedded in a porous medium in the presence of chemical reaction have been studied. A uniform magneti...The Soret and Dufour effects on unsteady MHD mixed convection flow past an infinite radiative vertical porous plate embedded in a porous medium in the presence of chemical reaction have been studied. A uniform magnetic field acts perpendicular to the porous surface. The Rosseland approximation has been used to describe the radiative heat flux in energy equation. The governing equations are solved numerically by applying explicit finite difference Method. The effects of various parameters on the velocity, temperature and concentration fields have been examined with the help of graphs.展开更多
This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructe...This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.展开更多
The present note consists, the effects of thermal diffusion and chemical reaction on MHD flow of dusty viscous incom-pressible, electrically conducting fluid between two vertical heated, porous, parallel plates with h...The present note consists, the effects of thermal diffusion and chemical reaction on MHD flow of dusty viscous incom-pressible, electrically conducting fluid between two vertical heated, porous, parallel plates with heat source/sink. The plate temperature is raised linearly with time and concentration level near the plate to Cw. The variable temperature and uniform mass diffusion taking into account the chemical reaction of first order. The series solution method is used to solve the mathematical equations. Effects of various parameters like chemical reaction (K), thermal diffusion (ST) and magnetic field (M) etc. on velocity profile, skin friction, concentration profile and temperature field are displayed graphically and discussed numerically for different physical parameters. The analysis developed here for thermal diffusion, bears good agreement with real life problems.展开更多
This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permea...This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.展开更多
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current...We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.展开更多
An analysis of two-dimensional steady magneto-hydrodynamic free convection flow of an electrically conducting, viscous, incompressible fluid past an inclined stretching porous plate in the presence of a uniform magnet...An analysis of two-dimensional steady magneto-hydrodynamic free convection flow of an electrically conducting, viscous, incompressible fluid past an inclined stretching porous plate in the presence of a uniform magnetic field and thermal radiation with heat generation is made. Both the Dufour and Soret effects are considered for a hydrogen-air mixture as the non-chemically reacting fluid pair. The equations governing the flow, temperature and concentration fields are reduced to a system of joined non-linear ordinary differential equations by similarity transformation. Non-linear differential equations are integrated numerically by using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. Finally the significance of physical parameters which are of engineering interest are examined both in graphical and tabular form.展开更多
The Dufour and Soret effects on the unsteady twodimensional magnetonyaro dynamics (MHD) doublediffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a nonDarcy porous me...The Dufour and Soret effects on the unsteady twodimensional magnetonyaro dynamics (MHD) doublediffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a nonDarcy porous medium are investigated numeri cally. The governing nonlinear dimensionless equations are solved by an implicit finite difference scheme of the CrankNicolson type with a tridiagonal matrix manipulation. The effects of various parameters entering into the problem on the unsteady dimension less velocity, temperature, and concentration profiles are studied in detail. Furthermore, the time variation of the skin friction coefficient, the Nusselt number, and the Sherwood number is presented and analyzed. The results show that the unsteady velocity, tem perature, and concentration profiles are substantially influenced by the Dufour and Soret effects. When the Dufour number increases or the Soret number decreases, both the skin friction and the Sherwood number decrease, while the Nusselt number increases. It is found that, when the magnetic parameter increases, the velocity and the temperature decrease in the boundary layer.展开更多
基金National Natural Science Foundation of China(No.B10275019)
文摘Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)
文摘Up to now, no a real full-cover liquid metal (LM) free surface flow have been successfully used in magnetic fusion devices as MHD instability and unavoidable rivulet flow. Recently, after we carried out a guidable free curve-surface flow on theoretically and experimentally, seeking for other way to get a full-cover free surface flow is also in implementing. The superficial layer MHD effect in free surface flow is experimentally observed. After compared and analyzed the characteristic parameters of the free surface flow, the conditions of full-cover free surface flow are found. Meanwhile, the new two parameters of surface cover ratio and rivulet flow index are introduced to characterize the flowing characteristic of the full-cover free surface flow under magnetic field. According to the analysis rule, for different liquid metal, there are the different unique conditions to meet full-cover free surface flow under magnetic field. This may be a way to solve free surface flow major MHD key issue for LM PFCs.
文摘This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient.
文摘The Soret and Dufour effects on unsteady MHD mixed convection flow past an infinite radiative vertical porous plate embedded in a porous medium in the presence of chemical reaction have been studied. A uniform magnetic field acts perpendicular to the porous surface. The Rosseland approximation has been used to describe the radiative heat flux in energy equation. The governing equations are solved numerically by applying explicit finite difference Method. The effects of various parameters on the velocity, temperature and concentration fields have been examined with the help of graphs.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia
文摘This article studies the Soret and Dufour effects on the magnetohydrody- namic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.
文摘The present note consists, the effects of thermal diffusion and chemical reaction on MHD flow of dusty viscous incom-pressible, electrically conducting fluid between two vertical heated, porous, parallel plates with heat source/sink. The plate temperature is raised linearly with time and concentration level near the plate to Cw. The variable temperature and uniform mass diffusion taking into account the chemical reaction of first order. The series solution method is used to solve the mathematical equations. Effects of various parameters like chemical reaction (K), thermal diffusion (ST) and magnetic field (M) etc. on velocity profile, skin friction, concentration profile and temperature field are displayed graphically and discussed numerically for different physical parameters. The analysis developed here for thermal diffusion, bears good agreement with real life problems.
基金Support of the National Natural Science Foundation of China under Grant Nos.51709191 and 51706149Key Laboratory of Advanced Reactor Engineering and Safety,Ministry of Education under Grant No.ARES-2018-10
文摘This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.
文摘We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.
文摘An analysis of two-dimensional steady magneto-hydrodynamic free convection flow of an electrically conducting, viscous, incompressible fluid past an inclined stretching porous plate in the presence of a uniform magnetic field and thermal radiation with heat generation is made. Both the Dufour and Soret effects are considered for a hydrogen-air mixture as the non-chemically reacting fluid pair. The equations governing the flow, temperature and concentration fields are reduced to a system of joined non-linear ordinary differential equations by similarity transformation. Non-linear differential equations are integrated numerically by using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. Finally the significance of physical parameters which are of engineering interest are examined both in graphical and tabular form.
文摘The Dufour and Soret effects on the unsteady twodimensional magnetonyaro dynamics (MHD) doublediffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a nonDarcy porous medium are investigated numeri cally. The governing nonlinear dimensionless equations are solved by an implicit finite difference scheme of the CrankNicolson type with a tridiagonal matrix manipulation. The effects of various parameters entering into the problem on the unsteady dimension less velocity, temperature, and concentration profiles are studied in detail. Furthermore, the time variation of the skin friction coefficient, the Nusselt number, and the Sherwood number is presented and analyzed. The results show that the unsteady velocity, tem perature, and concentration profiles are substantially influenced by the Dufour and Soret effects. When the Dufour number increases or the Soret number decreases, both the skin friction and the Sherwood number decrease, while the Nusselt number increases. It is found that, when the magnetic parameter increases, the velocity and the temperature decrease in the boundary layer.