期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
Event-Aware Sarcasm Detection in Chinese Social Media Using Multi-Head Attention and Contrastive Learning
1
作者 Kexuan Niu Xiameng Si +1 位作者 Xiaojie Qi Haiyan Kang 《Computers, Materials & Continua》 2025年第10期2051-2070,共20页
Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing ... Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing methods in capturing the implicit semantics and contextual associations in sarcastic expressions,this paper proposes an event-aware model for Chinese sarcasm detection,leveraging a multi-head attention(MHA)mechanism and contrastive learning(CL)strategies.The proposed model employs a dual-path Bidirectional Encoder Representations from Transformers(BERT)encoder to process comment text and event context separately and integrates an MHA mechanism to facilitate deep interactions between the two,thereby capturing multidimensional semantic associations.Additionally,a CL strategy is introduced to enhance feature representation capabilities,further improving the model’s performance in handling class imbalance and complex contextual scenarios.The model achieves state-of-the-art performance on the Chinese sarcasm dataset,with significant improvements in accuracy(79.55%),F1-score(84.22%),and an area under the curve(AUC,84.35%). 展开更多
关键词 Sarcasm detection event-aware multi-head attention contrastive learning NLP
在线阅读 下载PDF
MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning
2
作者 Zongzhe Xu Ming Yu 《Computers, Materials & Continua》 2025年第8期2805-2826,共22页
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as... As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates. 展开更多
关键词 Group-buying recommendation multi-head attention mechanism multi-task learning
在线阅读 下载PDF
Self-reduction multi-head attention module for defect recognition of power equipment in substation
3
作者 Yifeng Han Donglian Qi Yunfeng Yan 《Global Energy Interconnection》 2025年第1期82-91,共10页
Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the b... Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the blurred features of defect images,the current defect recognition algorithm has poor fine-grained recognition ability.Visual attention can achieve fine-grained recognition with its abil-ity to model long-range dependencies while introducing extra computational complexity,especially for multi-head attention in vision transformer structures.Under these circumstances,this paper proposes a self-reduction multi-head attention module that can reduce computational complexity and be easily combined with a Convolutional Neural Network(CNN).In this manner,local and global fea-tures can be calculated simultaneously in our proposed structure,aiming to improve the defect recognition performance.Specifically,the proposed self-reduction multi-head attention can reduce redundant parameters,thereby solving the problem of limited computational resources.Experimental results were obtained based on the defect dataset collected from the substation.The results demonstrated the efficiency and superiority of the proposed method over other advanced algorithms. 展开更多
关键词 multi-head attention Defect recognition Power equipment Computational complexity
在线阅读 下载PDF
Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection
4
作者 Guorong Qi Jian Mao +2 位作者 Kai Huang Zhengxian You Jinliang Lin 《Computers, Materials & Continua》 2025年第2期2159-2176,共18页
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc... Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance. 展开更多
关键词 Network traffic anomaly detection multi-head attention parallel dilated convolution residual learning
在线阅读 下载PDF
Lightweight Residual Multi-Head Convolution with Channel Attention(ResMHCNN)for End-to-End Classification of Medical Images
5
作者 Sudhakar Tummala Sajjad Hussain Chauhdary +3 位作者 Vikash Singh Roshan Kumar Seifedine Kadry Jungeun Kim 《Computer Modeling in Engineering & Sciences》 2025年第9期3585-3605,共21页
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit... Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms. 展开更多
关键词 Lightweight models brain tumor breast cancer lung cancer colon cancer multi-head CNN
在线阅读 下载PDF
SSA-LSTM-Multi-Head Attention Modelling Approach for Prediction of Coal Dust Maximum Explosion Pressure Based on the Synergistic Effect of Particle Size and Concentration
6
作者 Yongli Liu Weihao Li +1 位作者 Haitao Wang Taoren Du 《Computer Modeling in Engineering & Sciences》 2025年第5期2261-2286,共26页
Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effecti... Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effectively assess potential risks and provide a scientific basis for preventing coal dust explosions.In this study,a 20-L explosion sphere apparatus was used to test the maximum explosion pressure of coal dust under seven different particle sizes and ten mass concentrations(Cdust),resulting in a dataset of 70 experimental groups.Through Spearman correlation analysis and random forest feature selection methods,particle size(D_(10),D_(20),D_(50))and mass concentration(Cdust)were identified as critical feature parameters from the ten initial parameters of the coal dust samples.Based on this,a hybrid Long Short-Term Memory(LSTM)network model incorporating a Multi-Head Attention Mechanism and the Sparrow Search Algorithm(SSA)was proposed to predict the maximum explosion pressure of coal dust.The results demonstrate that the SSA-LSTM-Multi-Head Attention model excels in predicting the maximum explosion pressure of coal dust.The four evaluation metrics indicate that the model achieved a coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute percentage error(MAPE),and mean absolute error(MAE)of 0.9841,0.0030,0.0074,and 0.0049,respectively,in the training set.In the testing set,these values were 0.9743,0.0087,0.0108,and 0.0069,respectively.Compared to artificial neural networks(ANN),random forest(RF),support vector machines(SVM),particle swarm optimized-SVM(PSO-SVM)neural networks,and the traditional single-model LSTM,the SSA-LSTM-Multi-Head Attention model demonstrated superior generalization capability and prediction accuracy.The findings of this study not only advance the application of deep learning in coal dust explosion prediction but also provide robust technical support for the prevention and risk assessment of coal dust explosions. 展开更多
关键词 Coal dust explosion deep learning maximum explosion pressure predictive model SSA-LSTM multi-head attention mechanism
在线阅读 下载PDF
DMHFR:Decoder with Multi-Head Feature Receptors for Tract Image Segmentation
7
作者 Jianuo Huang Bohan Lai +2 位作者 Weiye Qiu Caixu Xu Jie He 《Computers, Materials & Continua》 2025年第3期4841-4862,共22页
The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships ... The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively. 展开更多
关键词 Medical image segmentation feature exploration feature aggregation deep learning multi-head feature receptor
在线阅读 下载PDF
MHB碎石化动力响应及其对邻近建筑和居民的振动影响 被引量:5
8
作者 李萍 念腾飞 +2 位作者 张雅莉 毛昱 乔雄 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期89-99,共11页
MHB碎石化技术广泛应用于改建工程中旧水泥混凝土路面破碎,但冲击破碎过程中对邻近建筑和居民的振动影响问题亟待解决.基于弹性理论和波动理论对冲击荷载下路面板的物理参数衰减规律进行推导分析;依托山东S245省道旧水泥混凝土路面改建... MHB碎石化技术广泛应用于改建工程中旧水泥混凝土路面破碎,但冲击破碎过程中对邻近建筑和居民的振动影响问题亟待解决.基于弹性理论和波动理论对冲击荷载下路面板的物理参数衰减规律进行推导分析;依托山东S245省道旧水泥混凝土路面改建工程现场振动监测试验,并结合ANSYS/LS-DYNA动力有限元数值模拟对不同影响因素下路面板的三向动力响应进行研究,探寻碎石化邻近建筑物水平安全距离和影响居民舒适度的临界距离.结果表明:MHB碎石化施工振动属于冲击型振源,振动以负幂指数形式衰减,且计算、实测和数值模拟结果曲线衰减趋势一致;随着冲程的增大,碎石化动力荷载峰值出现时间不断提前;振动速度峰值1cm/s可作为判断邻近建筑安全与否的控制指标;当重锤下落高度分别为0.8m、1.0m、1.2m时,临近建筑物水平安全距离分别为14m、18m、20m,影响居民舒适度的临界距离分别为24m、29m、和31m. 展开更多
关键词 旧水泥混凝土路面 mhb碎石化 动力响应 振动监测 安全评价
在线阅读 下载PDF
水泥混凝土路面MHB法碎石化环境影响分析与评价 被引量:6
9
作者 阎宗岭 高艳龙 冯学钢 《公路交通科技》 CAS CSCD 北大核心 2008年第8期47-51,共5页
为了掌握既有水泥混凝土路面MHB法碎石化改造时对周围环境的振动特点与影响范围,采用高精度震动测试仪对水泥混凝土路面MHB法碎石化时的施工振动特点、影响范围等进行了现场施工监测。对试验段现场振动测试的振动加速度时程曲线、加速... 为了掌握既有水泥混凝土路面MHB法碎石化改造时对周围环境的振动特点与影响范围,采用高精度震动测试仪对水泥混凝土路面MHB法碎石化时的施工振动特点、影响范围等进行了现场施工监测。对试验段现场振动测试的振动加速度时程曲线、加速度衰减特性曲线和加速度峰值随振中距衰减曲线的变化进行了对比、分析。表明采用MHB法对旧混凝土路面碎石化施工时所产生的机械振动加速度衰减速度很快,且具有冲击和瞬态振动的特点,对以填方为主在路堤边坡和挖方路堑边坡的安全影响范围与岩土体性质密切相关。通过试验建立了填方路基和挖方边坡的水平加速度和垂直加速度与MHB法碎石化振中距间的负指数和对数关系式,确定了混凝土路面MHB法碎石化振动对填方路基下边坡和挖方路堑上边坡上建筑物影响范围和最小安全距离,分别为5.5 m和25 m。 展开更多
关键词 道路工程 混凝土路面碎石化 振动监测 mhb 环境振动影响
在线阅读 下载PDF
MHB碎石化施工技术研究 被引量:3
10
作者 高昌 童申家 《公路工程》 2010年第3期109-111,共3页
依托国道G310洛阳新安段大修工程中的碎石化改造项目,系统的总结了MHB碎石化技术的适用条件与应用范围。同时根据依托工程提出了MHB碎石化技术合理的施工工艺流程,并针对施工中容易出现的问题,提出相应的解决办法。为了使碎石化层能够... 依托国道G310洛阳新安段大修工程中的碎石化改造项目,系统的总结了MHB碎石化技术的适用条件与应用范围。同时根据依托工程提出了MHB碎石化技术合理的施工工艺流程,并针对施工中容易出现的问题,提出相应的解决办法。为了使碎石化层能够满足加铺层的要求,提出了MHB碎石化技术施工中的质量检查指标以及施工完成后的质量验收指标。 展开更多
关键词 mhb碎石化技术 适用条件 施工工艺 质量检验
在线阅读 下载PDF
酵母双杂交技术筛选肝细胞中与羧基末端截短型乙型肝炎表面抗原中蛋白MHBs^(t167)蛋白结合蛋白的研究 被引量:3
11
作者 李志群 马英骥 成军 《胃肠病学和肝病学杂志》 CAS 2006年第2期138-140,共3页
目的应用酵母双杂交技术筛选人肝细胞cDNA文库中与羧基末端截短型乙型肝炎病毒表面抗原中蛋白(MHBst167)具有相互作用的肝细胞蛋白,以探讨MHBst167可能的生物学功能。方法用多聚酶链反应(PCR)法扩增MHBst167基因,应用酵母双杂交系统3,... 目的应用酵母双杂交技术筛选人肝细胞cDNA文库中与羧基末端截短型乙型肝炎病毒表面抗原中蛋白(MHBst167)具有相互作用的肝细胞蛋白,以探讨MHBst167可能的生物学功能。方法用多聚酶链反应(PCR)法扩增MHBst167基因,应用酵母双杂交系统3,连接入酵母表达载体pGBKT7中构建诱饵质粒,转染酵母细胞AH109并在其内表达,然后与转染了人肝cDNA文库质粒pACT2的酵母细胞Y187进行配合,于涂有Xαgal营养缺陷型培养基(SD/TrpLeuHisAde)上进行双重筛选阳性菌落。挑选阳性克隆,提取此酵母克隆的质粒转化DH5α大肠杆菌并经氨苄青霉素抗性筛选,提取单克隆菌落质粒DNA,酶切鉴定后进行测序,然后进行生物信息学分析。结果成功构建MHBst167酵母表达载体pGBKT7MHBst167。筛选出阳性菌落28个,经生物信息学分析,最后从肝细胞cDNA文库中筛选出7个与MHBst167特异性结合作用的克隆。其中包括人类核糖基化因子1、胎儿肝全长cDNA克隆、人类醛缩酶B果糖二磷酸(ALDOB)、补体3(C3)、人类血清扩散因子(生长调节素B)、人类BAC(细菌人工染色体)克隆GS1306C12。结论成功克隆出MHBst167基因并在酵母细胞中表达,应用酵母双杂交技术筛选出7个能与MHBst167蛋白相互作用的肝细胞结合蛋白基因,根据所克隆到的基因,对以后研究MHBst167的生物学功能及乙型肝炎病毒致癌的分子生物学机制奠定了理论基础。 展开更多
关键词 乙肝病毒 表面抗原中蛋白 酵母双杂交技术
暂未订购
冲击压实与MHB类设备对水泥混凝土路面破碎效果的对比 被引量:52
12
作者 李昶 张玉宏 张建 《公路交通科技》 CAS CSCD 北大核心 2004年第11期17-19,共3页
常规方式处理破坏严重的水泥混凝土路面时存在效率低、费用高的缺点,目前我国逐渐采用冲击压实设备进行破碎的工艺,山东省公路局近年又引进了MHB(Multiple HeadBreaker,多锤头破碎机)类水泥混凝土路面碎石化(Rubblization)设备。本文主... 常规方式处理破坏严重的水泥混凝土路面时存在效率低、费用高的缺点,目前我国逐渐采用冲击压实设备进行破碎的工艺,山东省公路局近年又引进了MHB(Multiple HeadBreaker,多锤头破碎机)类水泥混凝土路面碎石化(Rubblization)设备。本文主要从破碎效果对2种设备进行对比,通过2种工艺破碎后表面回弹弯沉及回弹模量等测试数据,分析2种工艺处治后结构层表面的强度变异性。结果显示,MHB设备破碎的水泥混凝土路面具有更好的强度均匀性,可以作为新加铺路面的基层。 展开更多
关键词 冲击压实 多锤头破碎机 水泥混凝土路面 碎石化
在线阅读 下载PDF
MHB4新型合金抗蚀性能研究
13
作者 尚红霞 黄拿灿 +4 位作者 黄惠平 胡社军 曾令湖 伍婉华 朱海泉 《材料科学与工艺》 EI CAS CSCD 2000年第2期76-78,共3页
用中频感应炉熔炼了新型超低碳高合金奥氏体不锈钢MHB4和 316L不锈钢 ,研究了它们在不同介质中的抗腐蚀性能 .结果表明 ,由于MHB4增加了Cr、Ni和Mo的含量 ,并加入W ,极大地提高了抵抗Cl-离子引起的点蚀能力 ,因此MHB4的耐点蚀、耐缝隙... 用中频感应炉熔炼了新型超低碳高合金奥氏体不锈钢MHB4和 316L不锈钢 ,研究了它们在不同介质中的抗腐蚀性能 .结果表明 ,由于MHB4增加了Cr、Ni和Mo的含量 ,并加入W ,极大地提高了抵抗Cl-离子引起的点蚀能力 ,因此MHB4的耐点蚀、耐缝隙腐蚀以及在合成海水中的抗蚀性均优于 316L不锈钢 . 展开更多
关键词 耐蚀性 合成海水 mhb4合金 腐蚀试验
在线阅读 下载PDF
基于Multi-head Attention和Bi-LSTM的实体关系分类 被引量:12
14
作者 刘峰 高赛 +1 位作者 于碧辉 郭放达 《计算机系统应用》 2019年第6期118-124,共7页
关系分类是自然语言处理领域的一项重要任务,能够为知识图谱的构建、问答系统和信息检索等提供技术支持.与传统关系分类方法相比较,基于神经网络和注意力机制的关系分类模型在各种关系分类任务中都获得了更出色的表现.以往的模型大多采... 关系分类是自然语言处理领域的一项重要任务,能够为知识图谱的构建、问答系统和信息检索等提供技术支持.与传统关系分类方法相比较,基于神经网络和注意力机制的关系分类模型在各种关系分类任务中都获得了更出色的表现.以往的模型大多采用单层注意力机制,特征表达相对单一.因此本文在已有研究基础上,引入多头注意力机制(Multi-head attention),旨在让模型从不同表示空间上获取关于句子更多层面的信息,提高模型的特征表达能力.同时在现有的词向量和位置向量作为网络输入的基础上,进一步引入依存句法特征和相对核心谓词依赖特征,其中依存句法特征包括当前词的依存关系值和所依赖的父节点位置,从而使模型进一步获取更多的文本句法信息.在SemEval-2010 任务8 数据集上的实验结果证明,该方法相较之前的深度学习模型,性能有进一步提高. 展开更多
关键词 关系分类 Bi-LSTM 句法特征 self-attention multi-head ATTENTION
在线阅读 下载PDF
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
15
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
乙肝病毒MHBs^t/HBx蛋白对Galβ1,3GalNAcα2,3-唾液酸转移酶的反式激活作用
16
作者 丁卉平 王俊琦 金城 《生物工程学报》 CAS CSCD 北大核心 2002年第5期551-555,共5页
PCR方法扩增乙肝病毒MHBst、HBx基因片段 ,构建真核表达载体pcDNA3 1 MHBst 和pcDNA3 1 HBx。PCR方法从肝细胞基因组中扩增出Galβ1,3GalNAcα2 ,3 唾液酸转移酶 (ST3GalI)的启动子Psial,用Psial取代pEGFP N1的启动子pCMV构建pEGFP N1 P... PCR方法扩增乙肝病毒MHBst、HBx基因片段 ,构建真核表达载体pcDNA3 1 MHBst 和pcDNA3 1 HBx。PCR方法从肝细胞基因组中扩增出Galβ1,3GalNAcα2 ,3 唾液酸转移酶 (ST3GalI)的启动子Psial,用Psial取代pEGFP N1的启动子pCMV构建pEGFP N1 Psial。利用磷酸钙 DNA共沉淀的方法 ,将pcDNA3 1 MHBst、pcDNA3 1 HBx分别与pEGFP N1 Psial瞬时共转染至正常肝细胞QGY 770 1。流式细胞仪分析细胞平均荧光密度值发现 ,MHBst、HBx分别将ST3GalI启动子的活性上调了 35 2 %和 43 8%。研究了乙肝病毒MHBst、HBx对ST3GalI的转录调控作用 。 展开更多
关键词 乙肝病毒 mhbs^t/HBx蛋白 Galβ1 α2 3-唾液酸转移酶 反式激活作用 肝癌发生
暂未订购
Sparse Autoencoder-based Multi-head Deep Neural Networks for Machinery Fault Diagnostics with Detection of Novelties 被引量:3
17
作者 Zhe Yang Dejan Gjorgjevikj +3 位作者 Jianyu Long Yanyang Zi Shaohui Zhang Chuan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期146-157,共12页
Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,... Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects. 展开更多
关键词 Deep learning Fault diagnostics Novelty detection multi-head deep neural network Sparse autoencoder
在线阅读 下载PDF
Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition 被引量:1
18
作者 Junjie Zhou Hongkui Xu +3 位作者 Zifeng Zhang Jiangkun Lu Wentao Guo Zhenye Li 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2277-2297,共21页
Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well a... Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis.These algorithms are also suitable for fraudulent phone text recognition.Compared to these tasks,the semantics of fraudulent words are more complex and more difficult to distinguish.Recurrent Neural Networks(RNN),the variants ofRNN,ConvolutionalNeuralNetworks(CNN),and hybrid neural networks to extract text features are used by most text classification research.However,a single network or a simple network combination cannot obtain rich characteristic knowledge of fraudulent phone texts relatively.Therefore,a new model is proposed in this paper.In the fraudulent phone text,the knowledge that can be learned by the model includes the sequence structure of sentences,the correlation between words,the correlation of contextual semantics,the feature of keywords in sentences,etc.The new model combines a bidirectional Long-Short Term Memory Neural Network(BiLSTM)or a bidirectional Gate Recurrent United(BiGRU)and a Multi-Head attention mechanism module with convolution.A normalization layer is added after the output of the final hidden layer.BiLSTM or BiGRU is used to build the encoding and decoding layer.Multi-head attention mechanism module with convolution(MHAC)enhances the ability of the model to learn global interaction information and multi-granularity local interaction information in fraudulent sentences.A fraudulent phone text dataset is produced by us in this paper.The THUCNews data sets and fraudulent phone text data sets are used in experiments.Experiment results show that compared with the baseline model,the proposed model(LMHACL)has the best experiment results in terms of Accuracy,Precision,Recall,and F1 score on the two data sets.And the performance indexes on fraudulent phone text data sets are all above 0.94. 展开更多
关键词 BiLSTM BiGRU multi-head attention mechanism CNN
在线阅读 下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism 被引量:1
19
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
在线阅读 下载PDF
Multi-Headed Deep Learning Models to Detect Abnormality of Alzheimer’s Patients 被引量:1
20
作者 S.Meenakshi Ammal P.S.Manoharan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期367-390,共24页
Worldwide,many elders are suffering from Alzheimer’s disease(AD).The elders with AD exhibit various abnormalities in their activities,such as sleep disturbances,wandering aimlessly,forgetting activities,etc.,which ar... Worldwide,many elders are suffering from Alzheimer’s disease(AD).The elders with AD exhibit various abnormalities in their activities,such as sleep disturbances,wandering aimlessly,forgetting activities,etc.,which are the strong signs and symptoms of AD progression.Recognizing these symptoms in advance could assist to a quicker diagnosis and treatment and to prevent the progression of Disease to the next stage.The proposed method aims to detect the behavioral abnormalities found in Daily activities of AD patients(ADP)using wearables.In the proposed work,a publicly available dataset collected using wearables is applied.Currently,no real-world data is available to illustrate the daily activities of ADP.Hence,the proposed method has synthesized the wearables data according to the abnormal activities of ADP.In the proposed work,multi-headed(MH)architectures such as MH Convolutional Neural Network-Long Short-Term Mem-ory Network(CNN-LSTM),MH one-dimensional Convolutional Neural Network(1D-CNN)and MH two dimensional Convolutional Neural Network(2D-CNN)as well as conventional methods,namely CNN-LSTM,1D-CNN,2D-CNN have been implemented to model activity pattern.A multi-label prediction technique is applied to detect abnormal activities.The results obtained show that the proposed MH architectures achieve improved performance than the conventional methods.Moreover,the MH models for activity recognition perform better than the abnormality detection. 展开更多
关键词 Alzheimer’s disease abnormal activity detection classifier chain multi-headed CNN-LSTM wearable sensor
暂未订购
上一页 1 2 6 下一页 到第
使用帮助 返回顶部