期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度特征融合的轻量化道路提取模型 被引量:4
1
作者 刘毅 陈一丹 +1 位作者 高琳 洪姣 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期951-959,共9页
针对当前用于遥感图像道路提取领域的语义模型存在计算复杂度较高、道路提取效果不佳的问题,提出基于多尺度特征融合的轻量化道路提取模型(MFL-DeepLab V3+).为了减少模型参数量并降低模型的计算复杂度,骨干网络选用轻量化Mobilenet V2... 针对当前用于遥感图像道路提取领域的语义模型存在计算复杂度较高、道路提取效果不佳的问题,提出基于多尺度特征融合的轻量化道路提取模型(MFL-DeepLab V3+).为了减少模型参数量并降低模型的计算复杂度,骨干网络选用轻量化Mobilenet V2网络代替原模型的Xception网络,在空洞空间金字塔池化(ASPP)模块中引入深度可分离卷积.为了增强模型的道路提取能力,优化对细小路段的提取效果,在解码区提出联合注意力的多尺度特征融合(MFFA).基于Massachusetts roads数据集的各项实验表明,MFL-DeepLab V3+模型的参数规模显著降低,较原模型参数量压缩了88.67%,道路提取图像完整,边缘清晰,精确率、召回率和F1分数分别达到88.45%、86.41%和87.42%,与其他模型相比取得了更好的提取效果. 展开更多
关键词 语义分割 道路提取 mfl-deeplab V3+ 多尺度特征融合 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部