Chemoselective,living/controlled polymerizations of allyl methacrylate(AMA) and vinyl methacrylate(VMA) with/without methyl methacrylate(MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs(LPs) have b...Chemoselective,living/controlled polymerizations of allyl methacrylate(AMA) and vinyl methacrylate(VMA) with/without methyl methacrylate(MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs(LPs) have been realized.The P-ylide-2/AIMe(BHT)_(2)(Pylide-2=Ph_(3)P=CHMe and BHT=2,6-iBu_(2)-4-MeC_(6)H_(2)O) was demonstrated to be superior by which homopolymers PAMAs(M_(n)=27.6-111.5kg/mol and ■=1.14-1.25) and PVMAs(M_(n)=28.4-78.4 kg/mol and ■=1.12-1.18) and block copolymers PMMA-b-PAMA,PAMA-b-PVMA,PAMA-bPMMA,PMMA-b-PAMA-b-PMMA,PAMA-b-PMMA-b-PAMA,and PAMA-b-PVMA-b-PAMA were synthesized.In the polymerizations,all of the monomers were reacted by the conjugated ester vinyl groups leaving intactly the nonconjugated acryloxy groups.The pendant acryloxy groups attached to the main chain enable further to post-functionalization by the AIBN-induced radical "thiol-ene" reaction using PhCH_(2)SH.The thiolether side group-containing polymers PAMA-SCH_(2)Ph and PAMA-SCH_(2)Ph-b-PMMA-b-PAMA-SCH_(2)Ph were thus prepared.展开更多
The synthesis and liquid crystalline behaviour of a series of alkyloxy biphenyls were described.These includes 4-alkyloxy-4 -hydroxy biphenyls,p-alkyloxy biphenyl meth acrylytes,and the polymer of p-ethoxy biphenyl me...The synthesis and liquid crystalline behaviour of a series of alkyloxy biphenyls were described.These includes 4-alkyloxy-4 -hydroxy biphenyls,p-alkyloxy biphenyl meth acrylytes,and the polymer of p-ethoxy biphenyl meth acrylate (PEBPMA).The effects of reaction conditions on the yields of products were investigated.The liquid crystalline behaviour of the products was characterized by DSC, polarizing microscopy..It was found that the PEBPMA showed smectic phase.展开更多
Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hyd...Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hydrothermal technique.Subsequently,the ZnO was functionalized with 3-aminopropyl triethoxysilane,which was converted to macroinitiator by the esterification of them with 2-bromopropionyl bromide.PGMA grafted ZnO nanowires(PGMA-ZnO) were then synthesized in an ATRP of the GMA with CuCl/2,2`-bipyridine as the catalyst system.Kinetics studies revealed an approximate linear increase in weight of polymer with reaction time,indicating that the polymerization process owned some "living" character.The structure and composition of PGMA-ZnO were characterized with scanning electron microscope(SEM),energy-dispersive X-ray(EDX) spectrometer,fourier transform infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA).展开更多
The dynamics of a series of poly(n-alkyl methacrylates) is investigated by means of ^(13)C spin-lattice relaxation experiments. The results show that the dynamics has the polymer property dependence.
Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alk...Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries.展开更多
Acrylamide was introduced onto the chain of poly[oligo(oxyethylene) methacrylate] as a polar constituent, and the effect of its presence on the mechanical strength and ionic conduction properties of Li-salt complex ba...Acrylamide was introduced onto the chain of poly[oligo(oxyethylene) methacrylate] as a polar constituent, and the effect of its presence on the mechanical strength and ionic conduction properties of Li-salt complex based on the resultant copolymer was investigated. The introduction of the polar constituent raises chain rigidity, retards crystallization of oligo(oxyethylene) domain and promotes the dissociation of lithium salt. The factors work on the mechanical and conduction properties synergistically, therefore both of the properties are improved simultaneously as the consequence of acrylamide-introduction.展开更多
Films were prepared from mixtures of copolymers of 4-nitro-4'-[N-methylacryloyloxyethyl, N'-ethyl] amino azobenzene with glycidyl methacrylate (chromophore content: 6 mol%) and copolymers containing anhydride ...Films were prepared from mixtures of copolymers of 4-nitro-4'-[N-methylacryloyloxyethyl, N'-ethyl] amino azobenzene with glycidyl methacrylate (chromophore content: 6 mol%) and copolymers containing anhydride units, which was obtained by the reaction of 4-nitro-4'-[N-hydroxyethyl, N'-ethyl] amino azobenzene with polymethacryloyl chloride (chromophore content: 25 mol %). During thermal poling process the anhydride reacts with the epoxy group and the resulting crosslinked network structure will stabilize the second harmonic generation in the poled film. The second harmonic generation of the poled film shows a maximum with the variation of composition this is presumed to be due to the effects of the increasing of concentration, orientation order as well as orientation stability of chromophore groups during crosslinking.展开更多
Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50 degrees C to -10 degrees C was investigat...Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50 degrees C to -10 degrees C was investigated. It was found that the polymerization of MMA and nBMA initiated by 1 proceeded quantitatively in THF to afford PMMA and PBMA with polydispersity index 1.15-1.30 and nearly 100% initiator efficiencies at -10 degrees C. The molecular weights increased linearly with the ratio of [monomer]/[1]. However, a post-polymerization experiment carried out on this system revealed a double polymer peak by GPC when fresh monomer was added after an interval of 10 min. Polymerization of styrene could be initiated by 1, but the initiator efficiency was low.展开更多
Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a c...Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.展开更多
Synthesis and anionic polymerization of the fluorine-substituted phenyl methacrylates are herein reported. A series of monodi-, and multi-substituted fluorophenyl methacrylates H2C=C(CH3)C(O)OC6H4F-4 (M^1a), H2...Synthesis and anionic polymerization of the fluorine-substituted phenyl methacrylates are herein reported. A series of monodi-, and multi-substituted fluorophenyl methacrylates H2C=C(CH3)C(O)OC6H4F-4 (M^1a), H2C=C(CH3)C(O)OC6H4F-3 (M^1b), HEC=C(CH3)C(O)OC6H3F2-2,4 (M^2), H2C=C(CH3)C(O)OC6H2F3-2,3,4 (M^3), H2C=C(CH3)C(O)OC6HF4-2,3,5,6 (M^4), and H2C=C(CH3)C(O)OC6F5 (M^5) were synthesized and characterized. Initially, the polymerization was carded out on the monomer M^1a by using nBuLi, tBuLi, and KH as the respective catalysts; this approach produced the polymers in yields of 12%-50%, but with lower molecular weights. Similar results were obtained by using tBuLi for catalytically polymerizing the other five monomers. By introducing a co-catalyst MeAl(BHT)2, the catalysts Nail, LiH, and tBuOLi each were tested to polymerize M^1a, which gave the polymers in very low yields (3%-7%). Polymer yields of 13%-27% were obtained by each of the catalysts LiAlH4, nBuLi, PhLi, and tBuLi in connection with MeAI(BHT)2, but a better yield (61%) was achieved with KH/MeAl(BHT)2. The KH/MeAl(BHT)2 catalyst system was further employed to polymerize M^1b and M^2, which afforded respective polymer yields of 12%-63% and 10%-53%, depending on the molar ratios of KH:MeAl(BHT)2 as well as on the monomer concentrations. All of the polymers produced were syndiotactically rich in structure, as indicated by either ^1H or ^19F NMR data. The polymerization mechanism by the combined catalyst system is proposed.展开更多
In this paper,low-temperature dielectric-blocked discharge plasma(DBD)was employed for the first time to treat silica-doped H_(4)PMo_(11)VO_(40)(HPAV)catalysts(DBD(Ar/x)-MF-Catal)and apply them in the catalytic methac...In this paper,low-temperature dielectric-blocked discharge plasma(DBD)was employed for the first time to treat silica-doped H_(4)PMo_(11)VO_(40)(HPAV)catalysts(DBD(Ar/x)-MF-Catal)and apply them in the catalytic methacrolein(MAL)selective oxidation to produce methacrylic acid(MAA).This work investigates in detail the controllable regulation of the concentration of oxidation states on silica-doped HPAV catalysts by adjusting the DBD discharge with controlled changes in voltage,current,treatment time,and treatment medium.It reports the intrinsic correlation between oxidation states and MAL oxidation performance.The research results indicated that the catalytic performance was related to the presence of oxygen vacancies and oxygen species(VO^(2+)),and are the main reason for the selective oxidation of MAL to MAA.Besides,the generation of oxygen vacancies and VO^(2+)altered localized electrons,which resulted in the easier activation of O_(2).Theoretical calculations of DFT also proved the formation mechanism of oxygen vacancies and VO^(2+)and electron properties on high-performance polymers,which elucidated the intrinsic influence of catalyst components.The DBD(Ar/10)-MF-Catal catalysts with suitable VO^(2+)and oxygen vacancy concentrations exhibited the highest catalytic performance with 90%MAL conversion and 70%MAA selectivity and showed good stability(500 h).展开更多
Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these...Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these pseudomembranes face challenges such as saliva flushing,dynamic changes,and the presence of abundant microorganisms in the complex oral environment.Herein,we developed an injectable,photoinduction,in situ-enhanceable oral ulcer repair hydrogel(named as GIL2)by incorporating dynamic phenylboronic acid ester bonds and imidazole ions into a methacrylated gelatin matrix.GIL2 exhibited rapid gelation(3 s),low swelling properties(1.07 g/g),robust tensile strength(56.83 kPa)and high adhesive strength(63.38 kPa),allowing it to adhere effectively to the ulcer surface.Moreover,the GIL2 demonstrated intrinsic antibacterial and antioxidant qualities.Within a diabetic rat model for oral ulcers,GIL2 effectively eased oxidative stress and decreased the inflammation present in ulcerated wounds,thereby greatly hastening the healing process of these ulcers.Together,GIL2 hydrogel demonstrates remarkable adaptability within the oral milieu,revitalizing clinical strategy advancements for treating bacterialinfected oral ulcers.展开更多
Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interfac...Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.展开更多
The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality.Through introducing innovative solutions for energy harvesting and autonomous sensing,this...The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality.Through introducing innovative solutions for energy harvesting and autonomous sensing,this research presents a cost-effective strategy to enhance the performance of triboelectric nanogenerators(TENGs).The TENG was fabricated from polyvinylidene fluoride(PVDF)and N,N'-poly(methyl methacrylate)(PMMA)blend with a porous structure via a novel optimized quenching method.The developed approach results in a highβ-phase content(85.7%)PVDF/3wt.%PMMA porous blend,known for its superior piezoelectric properties.PVDF/3wt.%PMMA modified porous TENG demonstrates remarkable electrical output,with a dielectric constant of 40 and an open-circuit voltage of approximately 600 V.The porous matrix notably increases durability,enduring over 36000 operational cycles without performance degradation.Moreover,practical applications were explored in this research,including powering LEDs and pacemakers with a maximum power output of 750mWm^(-2).Also,TENG served as a self-powered tactile sensor for robotic applications in various temperature conditions.The work highlights the potential of the PVDF/PMMA porous blend to utilize the next-generation self-powered sensors and power small electronic devices.展开更多
Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately c...Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation.展开更多
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me...Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.展开更多
Gel polymer electrolytes(GPEs)effectively combine the advantages of high ionic conductivity and re-duce the risk of leakage associated with liquid.In this study,a chemically cross-linked gel polymer electrolyte was pr...Gel polymer electrolytes(GPEs)effectively combine the advantages of high ionic conductivity and re-duce the risk of leakage associated with liquid.In this study,a chemically cross-linked gel polymer electrolyte was prepared by in-situ polymerization using polymethyl methacrylate(PMMA)as a matrix and neopentyl glycol diacrylate(NPGDA)as cross-linking agent.The cross-linked structure of the GPE was preliminarily investigated,as well as the influence of the degree of cross-linking on its phys-ical properties.The GPE exhibited a superior conductivity of 1.391 mS cm^(-1) at 25℃.Herein,the Li|GPE|LiNi_(0.8) Co_(0.1) Mn_(0.1) O_(2) cell has an excellent capacity retention rate of 80.7%after 150 cycles at 0.5 C in addition to a high discharge specific capacity of 203 mAh g^(-1).The structure of the cathode ma-terial is shielded from the production of byproducts during the charging and discharging of lithium-ion batteries by the cross-linked PMMA GPE.展开更多
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal...The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.展开更多
In this study,a series of hindered urea bond(HUB)containing polyurethane-urea methacrylate prepolymers and a none HUB containing polyurethane methacrylate prepolymer were prepared using isobornyl methacrylate as the r...In this study,a series of hindered urea bond(HUB)containing polyurethane-urea methacrylate prepolymers and a none HUB containing polyurethane methacrylate prepolymer were prepared using isobornyl methacrylate as the reactive diluent via one-pot procedure.The prepolymers were characterized fully by various techniques.Then,their thermosets were fabricated via UV curing in presence of a photo initiator,and their mechanical property and thermal behavior were investigated and compared.Different from the none HUB containing thermoset,the HUB containing thermosets(defined as PUT)could be recycled and reprocessed by hot press under relatively mild conditions with high recovery ratio of mechanical property.Furthermore,zinc oxide(ZnO)nanoparticles were modified with 3-(trimethoxysilyl)propyl methacrylate and the modified ZnO(defined as ZnO-TPM)was dispersed and polymerized into PUT matrix to prepare their nanocomposites.The influence of ZnO-TPM on the mechanical performance of the composites was evaluated,which indicated that the Young’s modulus and tensile strength increased gradually to the maximum values at ZnO-TPM content of 1 wt%and then decreased.The composites also displayed good reprocessability with improved recovery ratio compared to the pure PUT sample.In addition,the composite materials exhibited strong UV absorption capacity,implying their potential application in the circumstance where UV-shielding was required.展开更多
Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mec...Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mechanical strength, unique surface characteristics, and improved adherence that is transmitted into the polymer matrix to form a nanocomposite with improved properties. Polymethyl methacrylate is a common carbon source for the synthesis of carbon nanofibres of its high mechanical strength, thermal stability, and low moisture and water absorbing capacity that allows its products to have several applications. In this work, we report the successful electrospinning of carbon nanofibres from Poly methyl methacrylate and functionalizing the resulting carbon nanofibres. The functionalized carbon nanofibres were analyzed to determine their solubility/dispersion in selected organic solvents, then characterized using Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy combined with Energy dispersive spectroscopy and Thermalgravimetric analysis.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 21972112 and 22225104)China Postdoctoral Science Foundation (Nos. 2022TQ0115 and 2022M711297)。
文摘Chemoselective,living/controlled polymerizations of allyl methacrylate(AMA) and vinyl methacrylate(VMA) with/without methyl methacrylate(MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs(LPs) have been realized.The P-ylide-2/AIMe(BHT)_(2)(Pylide-2=Ph_(3)P=CHMe and BHT=2,6-iBu_(2)-4-MeC_(6)H_(2)O) was demonstrated to be superior by which homopolymers PAMAs(M_(n)=27.6-111.5kg/mol and ■=1.14-1.25) and PVMAs(M_(n)=28.4-78.4 kg/mol and ■=1.12-1.18) and block copolymers PMMA-b-PAMA,PAMA-b-PVMA,PAMA-bPMMA,PMMA-b-PAMA-b-PMMA,PAMA-b-PMMA-b-PAMA,and PAMA-b-PVMA-b-PAMA were synthesized.In the polymerizations,all of the monomers were reacted by the conjugated ester vinyl groups leaving intactly the nonconjugated acryloxy groups.The pendant acryloxy groups attached to the main chain enable further to post-functionalization by the AIBN-induced radical "thiol-ene" reaction using PhCH_(2)SH.The thiolether side group-containing polymers PAMA-SCH_(2)Ph and PAMA-SCH_(2)Ph-b-PMMA-b-PAMA-SCH_(2)Ph were thus prepared.
文摘The synthesis and liquid crystalline behaviour of a series of alkyloxy biphenyls were described.These includes 4-alkyloxy-4 -hydroxy biphenyls,p-alkyloxy biphenyl meth acrylytes,and the polymer of p-ethoxy biphenyl meth acrylate (PEBPMA).The effects of reaction conditions on the yields of products were investigated.The liquid crystalline behaviour of the products was characterized by DSC, polarizing microscopy..It was found that the PEBPMA showed smectic phase.
基金the National Natural Science Foundation of China (No.50730008 and 30772434)Shanghai Science & Technology Committee (No.09JC1407400 and 1052nm02000)
文摘Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hydrothermal technique.Subsequently,the ZnO was functionalized with 3-aminopropyl triethoxysilane,which was converted to macroinitiator by the esterification of them with 2-bromopropionyl bromide.PGMA grafted ZnO nanowires(PGMA-ZnO) were then synthesized in an ATRP of the GMA with CuCl/2,2`-bipyridine as the catalyst system.Kinetics studies revealed an approximate linear increase in weight of polymer with reaction time,indicating that the polymerization process owned some "living" character.The structure and composition of PGMA-ZnO were characterized with scanning electron microscope(SEM),energy-dispersive X-ray(EDX) spectrometer,fourier transform infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA).
基金Supported by The National Natural Science Foundation of China
文摘The dynamics of a series of poly(n-alkyl methacrylates) is investigated by means of ^(13)C spin-lattice relaxation experiments. The results show that the dynamics has the polymer property dependence.
基金supported by NIH R01 DE17974West China School of Stomatologya Seed Grant from Department of Endodontics,Prosthodontics and Operative Dentistry,University of Maryland
文摘Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries.
文摘Acrylamide was introduced onto the chain of poly[oligo(oxyethylene) methacrylate] as a polar constituent, and the effect of its presence on the mechanical strength and ionic conduction properties of Li-salt complex based on the resultant copolymer was investigated. The introduction of the polar constituent raises chain rigidity, retards crystallization of oligo(oxyethylene) domain and promotes the dissociation of lithium salt. The factors work on the mechanical and conduction properties synergistically, therefore both of the properties are improved simultaneously as the consequence of acrylamide-introduction.
文摘Films were prepared from mixtures of copolymers of 4-nitro-4'-[N-methylacryloyloxyethyl, N'-ethyl] amino azobenzene with glycidyl methacrylate (chromophore content: 6 mol%) and copolymers containing anhydride units, which was obtained by the reaction of 4-nitro-4'-[N-hydroxyethyl, N'-ethyl] amino azobenzene with polymethacryloyl chloride (chromophore content: 25 mol %). During thermal poling process the anhydride reacts with the epoxy group and the resulting crosslinked network structure will stabilize the second harmonic generation in the poled film. The second harmonic generation of the poled film shows a maximum with the variation of composition this is presumed to be due to the effects of the increasing of concentration, orientation order as well as orientation stability of chromophore groups during crosslinking.
基金supported by the National Natural Science Foundation of China(No.20374005)China Petroleum &Chemical Corporation.
文摘Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50 degrees C to -10 degrees C was investigated. It was found that the polymerization of MMA and nBMA initiated by 1 proceeded quantitatively in THF to afford PMMA and PBMA with polydispersity index 1.15-1.30 and nearly 100% initiator efficiencies at -10 degrees C. The molecular weights increased linearly with the ratio of [monomer]/[1]. However, a post-polymerization experiment carried out on this system revealed a double polymer peak by GPC when fresh monomer was added after an interval of 10 min. Polymerization of styrene could be initiated by 1, but the initiator efficiency was low.
文摘Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission.
基金supported by the National Basic Research Program of China(2012CB821704)the National Natural Science Foundation of China(20972129)the Innovative Research Team Program(IRT1036,J1310024)
文摘Synthesis and anionic polymerization of the fluorine-substituted phenyl methacrylates are herein reported. A series of monodi-, and multi-substituted fluorophenyl methacrylates H2C=C(CH3)C(O)OC6H4F-4 (M^1a), H2C=C(CH3)C(O)OC6H4F-3 (M^1b), HEC=C(CH3)C(O)OC6H3F2-2,4 (M^2), H2C=C(CH3)C(O)OC6H2F3-2,3,4 (M^3), H2C=C(CH3)C(O)OC6HF4-2,3,5,6 (M^4), and H2C=C(CH3)C(O)OC6F5 (M^5) were synthesized and characterized. Initially, the polymerization was carded out on the monomer M^1a by using nBuLi, tBuLi, and KH as the respective catalysts; this approach produced the polymers in yields of 12%-50%, but with lower molecular weights. Similar results were obtained by using tBuLi for catalytically polymerizing the other five monomers. By introducing a co-catalyst MeAl(BHT)2, the catalysts Nail, LiH, and tBuOLi each were tested to polymerize M^1a, which gave the polymers in very low yields (3%-7%). Polymer yields of 13%-27% were obtained by each of the catalysts LiAlH4, nBuLi, PhLi, and tBuLi in connection with MeAI(BHT)2, but a better yield (61%) was achieved with KH/MeAl(BHT)2. The KH/MeAl(BHT)2 catalyst system was further employed to polymerize M^1b and M^2, which afforded respective polymer yields of 12%-63% and 10%-53%, depending on the molar ratios of KH:MeAl(BHT)2 as well as on the monomer concentrations. All of the polymers produced were syndiotactically rich in structure, as indicated by either ^1H or ^19F NMR data. The polymerization mechanism by the combined catalyst system is proposed.
基金financially supported by the Taishan Scholars Program of Shandong Province(No.tsqn202103051)the Science and Technology Project of Xinjiang Bingtuan Supported by the Central Government(No.2022BC001)the Project of Scientific Research in Shihezi University(No.CXFZ202205)。
文摘In this paper,low-temperature dielectric-blocked discharge plasma(DBD)was employed for the first time to treat silica-doped H_(4)PMo_(11)VO_(40)(HPAV)catalysts(DBD(Ar/x)-MF-Catal)and apply them in the catalytic methacrolein(MAL)selective oxidation to produce methacrylic acid(MAA).This work investigates in detail the controllable regulation of the concentration of oxidation states on silica-doped HPAV catalysts by adjusting the DBD discharge with controlled changes in voltage,current,treatment time,and treatment medium.It reports the intrinsic correlation between oxidation states and MAL oxidation performance.The research results indicated that the catalytic performance was related to the presence of oxygen vacancies and oxygen species(VO^(2+)),and are the main reason for the selective oxidation of MAL to MAA.Besides,the generation of oxygen vacancies and VO^(2+)altered localized electrons,which resulted in the easier activation of O_(2).Theoretical calculations of DFT also proved the formation mechanism of oxygen vacancies and VO^(2+)and electron properties on high-performance polymers,which elucidated the intrinsic influence of catalyst components.The DBD(Ar/10)-MF-Catal catalysts with suitable VO^(2+)and oxygen vacancy concentrations exhibited the highest catalytic performance with 90%MAL conversion and 70%MAA selectivity and showed good stability(500 h).
基金funding from the National Natural Science Foundation of China(Nos.82071170 and 82371016)the Zhejiang Provincial Science and Technology Project for Public Welfare(No.LGF21H140004).
文摘Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these pseudomembranes face challenges such as saliva flushing,dynamic changes,and the presence of abundant microorganisms in the complex oral environment.Herein,we developed an injectable,photoinduction,in situ-enhanceable oral ulcer repair hydrogel(named as GIL2)by incorporating dynamic phenylboronic acid ester bonds and imidazole ions into a methacrylated gelatin matrix.GIL2 exhibited rapid gelation(3 s),low swelling properties(1.07 g/g),robust tensile strength(56.83 kPa)and high adhesive strength(63.38 kPa),allowing it to adhere effectively to the ulcer surface.Moreover,the GIL2 demonstrated intrinsic antibacterial and antioxidant qualities.Within a diabetic rat model for oral ulcers,GIL2 effectively eased oxidative stress and decreased the inflammation present in ulcerated wounds,thereby greatly hastening the healing process of these ulcers.Together,GIL2 hydrogel demonstrates remarkable adaptability within the oral milieu,revitalizing clinical strategy advancements for treating bacterialinfected oral ulcers.
基金financially supported by the National Natural Science Foundation of China(Nos.22172028,21903015,and 22403017)Natural Science Foundation of Fujian Province of China(No.2022J05041)。
文摘Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.
基金supported by the research projects AP14869428 from the Ministry of Science and Higher Education of the Republic of Kazakhstan20122022FD4135 from Nazarbayev University.
文摘The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality.Through introducing innovative solutions for energy harvesting and autonomous sensing,this research presents a cost-effective strategy to enhance the performance of triboelectric nanogenerators(TENGs).The TENG was fabricated from polyvinylidene fluoride(PVDF)and N,N'-poly(methyl methacrylate)(PMMA)blend with a porous structure via a novel optimized quenching method.The developed approach results in a highβ-phase content(85.7%)PVDF/3wt.%PMMA porous blend,known for its superior piezoelectric properties.PVDF/3wt.%PMMA modified porous TENG demonstrates remarkable electrical output,with a dielectric constant of 40 and an open-circuit voltage of approximately 600 V.The porous matrix notably increases durability,enduring over 36000 operational cycles without performance degradation.Moreover,practical applications were explored in this research,including powering LEDs and pacemakers with a maximum power output of 750mWm^(-2).Also,TENG served as a self-powered tactile sensor for robotic applications in various temperature conditions.The work highlights the potential of the PVDF/PMMA porous blend to utilize the next-generation self-powered sensors and power small electronic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.52404155 and 52304111)State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(Grant No.XD2024006).
文摘Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation.
基金research conducted with the financial support of Science Foundation Ireland under the SFI Research Infrastructure Programme (21/RI/9831)the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78)
文摘Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.
基金supported by the National Natural Science Foundation of China(No.U22A20420)the Science and Technology Plan Project of Changzhou(No.CJ20235017)In addi-tion,the authors thank Jiangsu Development&Reform Commis-sion for their support.
文摘Gel polymer electrolytes(GPEs)effectively combine the advantages of high ionic conductivity and re-duce the risk of leakage associated with liquid.In this study,a chemically cross-linked gel polymer electrolyte was prepared by in-situ polymerization using polymethyl methacrylate(PMMA)as a matrix and neopentyl glycol diacrylate(NPGDA)as cross-linking agent.The cross-linked structure of the GPE was preliminarily investigated,as well as the influence of the degree of cross-linking on its phys-ical properties.The GPE exhibited a superior conductivity of 1.391 mS cm^(-1) at 25℃.Herein,the Li|GPE|LiNi_(0.8) Co_(0.1) Mn_(0.1) O_(2) cell has an excellent capacity retention rate of 80.7%after 150 cycles at 0.5 C in addition to a high discharge specific capacity of 203 mAh g^(-1).The structure of the cathode ma-terial is shielded from the production of byproducts during the charging and discharging of lithium-ion batteries by the cross-linked PMMA GPE.
基金supported by National Natural Science Foundation of China(21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(18964308D)the Key Program of Natural Science Foundation of Hebei Province(B2020202048).
文摘The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.
文摘In this study,a series of hindered urea bond(HUB)containing polyurethane-urea methacrylate prepolymers and a none HUB containing polyurethane methacrylate prepolymer were prepared using isobornyl methacrylate as the reactive diluent via one-pot procedure.The prepolymers were characterized fully by various techniques.Then,their thermosets were fabricated via UV curing in presence of a photo initiator,and their mechanical property and thermal behavior were investigated and compared.Different from the none HUB containing thermoset,the HUB containing thermosets(defined as PUT)could be recycled and reprocessed by hot press under relatively mild conditions with high recovery ratio of mechanical property.Furthermore,zinc oxide(ZnO)nanoparticles were modified with 3-(trimethoxysilyl)propyl methacrylate and the modified ZnO(defined as ZnO-TPM)was dispersed and polymerized into PUT matrix to prepare their nanocomposites.The influence of ZnO-TPM on the mechanical performance of the composites was evaluated,which indicated that the Young’s modulus and tensile strength increased gradually to the maximum values at ZnO-TPM content of 1 wt%and then decreased.The composites also displayed good reprocessability with improved recovery ratio compared to the pure PUT sample.In addition,the composite materials exhibited strong UV absorption capacity,implying their potential application in the circumstance where UV-shielding was required.
文摘Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mechanical strength, unique surface characteristics, and improved adherence that is transmitted into the polymer matrix to form a nanocomposite with improved properties. Polymethyl methacrylate is a common carbon source for the synthesis of carbon nanofibres of its high mechanical strength, thermal stability, and low moisture and water absorbing capacity that allows its products to have several applications. In this work, we report the successful electrospinning of carbon nanofibres from Poly methyl methacrylate and functionalizing the resulting carbon nanofibres. The functionalized carbon nanofibres were analyzed to determine their solubility/dispersion in selected organic solvents, then characterized using Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy combined with Energy dispersive spectroscopy and Thermalgravimetric analysis.