Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental ...Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.展开更多
Hybrid electrochemical devices(HEDs),which consist of one faradaic electrode and the other capacitive electrode,are considered as promising technologies owing to their high ion storage capacity,excellent rate performa...Hybrid electrochemical devices(HEDs),which consist of one faradaic electrode and the other capacitive electrode,are considered as promising technologies owing to their high ion storage capacity,excellent rate performance,and long cyclability.In particular,MXenes have been extensively investigated as faradaic electrodes of HEDs owing to their fast electron and ion transport capabilities and diverse and tunable surface modifications.Herein,we provide a comprehensive review on the design strategies for enhancing the electrochemical performances of MXenes in HEDs,focusing on interlayer engineering,surface modification,and hybrid formation.We also summarize the recent advancement in the use of MXenes in metal-ion hybrid capacitors and hybrid capacitive deionization.Lastly,we address the current challenges for the practical application of MXene-based hybrid devices and offer our perspectives for future research directions.This review aims to provide insights into innovative MXene design strategies for electrochemical energy storage and water purification by elucidating the correlations between material chemistry and electrochemical properties of MXenes.展开更多
Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical ener...Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manufacturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development.展开更多
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi...To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.展开更多
Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne...Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.展开更多
The typical metal chloride-graphite intercalation compounds(MC-GICs)inherit intercalation capacity,high charge conductivity,and high tap density from graphite,and these are considered as one of the promising alternati...The typical metal chloride-graphite intercalation compounds(MC-GICs)inherit intercalation capacity,high charge conductivity,and high tap density from graphite,and these are considered as one of the promising alternatives of graphite anode in rechargeable metal-ion batteries(MIBs).Notably,the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs.The optimization of both graphite host and metal chloride species with specific structures endows MC-GICs with design feasibility for different application requirements of different MIBs,such as several times the actual capacity compared to graphite anodes,rapid migration of large carriers,and other properties.Herein,a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC-GICs and their interesting performance features of full potential application in rechargeable MIBs.Based on the existing research of MC-GICs,necessary improvements and prospects in the near future have been put forward.展开更多
The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover...The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover new BN-doped biphenylene networks(C_(4)BN,C_(2)B_(2)N_(2),and B_(4)N_(4))and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations.The thermodynamic,thermal,and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks.Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor.The BN biphenylene network shows an HSE06 band gap of 3.06 eV,smaller than h-BN.The C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks offer Li(K)adsorption energy of-0.56 eV(-0.81 eV)and-0.14 eV(-0.28 eV),respectively,with a low diffusion barrier of 178 meV(58 meV)and 251 meV(79 meV),and a large diffusion constant of 8.50×10^(-5)cm^(2)=s(8.78×10^(-3)cm^(2)=s)and 5.33×10^(-6)cm^(2)=s(4.12×10^(-3)cm^(2)=s),respectively.The calculated Li(K)theoretical capacity of C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks is 940.21 mA h g^(-1)(899.01 mA h g^(-1))and 768.08 mA h g^(-1)(808.47 mA h g^(-1)),with a low open circuit voltage of 0.34 V(0.23 V),and 0.17 V(0.13 V),resulting in very high energy density of 2576.18 mW h g^(-1)(2445.31 mW h g^(-1))and 2181.35 mW h g^(-1)(2263.72 mW h g^(-1)),respectively.Only a slight volume change of 1.6%confirms the robustness of BN-doped carbon-based biphenylene networks.Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.展开更多
With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Elec...With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.展开更多
Aqueous zinc(Zn)-ion batteries(AZIBs)have gained significant interest in energy storage due to several unique advantages.Utilizing waterbased electrolytes enhances environmental sustainability,while the abundance and ...Aqueous zinc(Zn)-ion batteries(AZIBs)have gained significant interest in energy storage due to several unique advantages.Utilizing waterbased electrolytes enhances environmental sustainability,while the abundance and affordability of Zn offer economic benefits.Manganese(Mn)-based materials,commonly used as cathodes in these batteries,provide high theoretical capacity,high electrical conductivity,and good structural stability.However,these materials suffer from capacity degradation over repeated cycles due to structural collapse and limited conductivity.To address this problem,we synthesized a magnesium(Mg)-and Mn-based composite,Mg^(2+)-Mn_(3)O_(4),using the hydrothermal method with an optimized amount of ammonium hydroxide(NH_(4)OH)solution.This approach effectively stabilizes the structure during cycling,enhancing both capacity retention and conductivity.The Zn^(2+)/H+intercalation/deintercalation process was confirmed by experimental results and ex-situ X-ray diffraction analysis,which demonstrates that Mg^(2+),along with optimized NH_(4)OH amount,prevents structural collapse and improves conductivity.Under optimal process conditions,the composite electrode(Mg^(2+)-Mn_(3)O_(4)–8 ml)achieved a capacity of 173.58 mA h g^(-1) at 0.5 A g^(-1),with excellent rate performance of 71.39 mA h g^(-1) at 10 A g^(-1).Remarkably,even at 5 A g^(-1),the electrode maintained a capacity of 86.87 mA h g^(-1) over 2100 cycles,underscoring the role of Mg^(2+)and NH_(4)OH in enhancing the reversible insertion/extraction stability of Zn^(2+)in Mn-based layered materials.This study presents a novel strategy for metal-ion incorporation in Mn-based AZIBs,offering insights into the optimization of cathode materials and advancing research on associated storage mechanisms.展开更多
Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type...Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.展开更多
The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with thei...The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.展开更多
Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing t...Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs.展开更多
Layered materials with adjustable framework,as the most potential cathode materials for aqueous rechargeable zinc ion batterie,have high capacity,permit of rapid ion diffusion,and charge transfer channels.Previous stu...Layered materials with adjustable framework,as the most potential cathode materials for aqueous rechargeable zinc ion batterie,have high capacity,permit of rapid ion diffusion,and charge transfer channels.Previous studies have widely investigated their preparation and storage mechanism,but the intrinsic relationship between the structural design of layered cathode materials and electrochemical performance has not been well established.In this work,based on the first principles calculations and experiments,a crucial strategy of pre-intercalated metalions in vanadium oxide interlayer with administrable p-band center(ε_(p))of O is explored to enhance Zn^(2+)storage.This regulation of the degree of covalent bond and the average charge of O atoms varies the binding energy between Zn^(2+)and O,thus affecting the intercalation/de-intercalation of Zn2þ.The present study demonstrates thatεp of O can be used as an important indicator to boost Zn2þstorage,which provides a new concept toward the controlled design and application of layered materials.展开更多
BACKGROUND Among the various complications associated with total hip arthroplasty(THA)periprosthetic osteolysis and wear phenomena due to the release of metal particles,are two of the most common and have been reporte...BACKGROUND Among the various complications associated with total hip arthroplasty(THA)periprosthetic osteolysis and wear phenomena due to the release of metal particles,are two of the most common and have been reported to be correlated because of inflammatory responses directed towards released particles that generally activate macrophagic osteolytic effects.Therein,new masses known as pseudotumors can appear in soft tissues around a prosthetic implant.To date,there is paucity of reliable data from studies investigating for any association between the above mentioned adverse events.AIM To investigate for the existence of any association between serum and urine concentrations of metal-ions released in THA and periprosthetic osteolysis for modular neck and monolithic implants.METHODS Overall,76 patients were divided into three groups according to the type of hip prosthesis implants:Monoblock,modular with metal head and modular with ceramic head.With an average f-up of 4 years,we conducted a radiological evaluation in order to detect any area of osteolysis around the prosthesis of both the femur and the acetabulum.Moreover,serum and urinary tests were performed to assess the values of Chromium and Cobalt released.Statistical analysis was performed to determine any association between the ion release and osteolysis.RESULTS For the 3 study groups,the monolithic,modular ceramic-headed and modular metal-headed implants had different incidences of osteolysis events,which were higher for the modular implants.Furthermore,the most serious of these(grade 3)were detected almost exclusively for the modular implants with metal heads.A mapping of the affected areas was performed revealing that the highest incidences of osteolysis were evidenced in the pertrochanteric region at the femur level,and in the supero-external region at the acetabular level.Regarding the evaluation of the release of metals-ions from wear processes,serum and urinary chromium and cobalt values were found to be higher in cases of modularity,and even more so for those with metal head.Statistical linear correlation test results suggested positive correlations between increasing metal concentrations and incidences areas of osteolysis.However,no cases of pseudo-tumor were detected.CONCLUSION Future studies are needed to identify risk factors that increase peri-prosthetic metal ion levels and whether these factors might be implicated in the triggering of local events,including osteolysis and aseptic loosening.展开更多
Ca^(2+)/Na+separation is a common problem in industrial applications,biological and medical fields.However,Ca^(2+)and Na+have similar ionic radii and hydration radii,thus Ca^(2+)/Na+separation is challenging.Inspired ...Ca^(2+)/Na+separation is a common problem in industrial applications,biological and medical fields.However,Ca^(2+)and Na+have similar ionic radii and hydration radii,thus Ca^(2+)/Na+separation is challenging.Inspired by biological channels,group modification is one of the effective methods to improve the separation performance.In this work,molecular dynamics simulations were performed to investigate the effects of different functional groups(COO,NH3+)on the separation performance of Ca^(2+)and Na+through graphene nanopores under an electric field.The pristine graphene nanopore was used for comparison.Results showed that three types of nanopores preferred Ca^(2+)to Na+,and Ca^(2+)/Na+selectivity followed the order of GE-COO(4.06)>GE(1.85)>GE-NH3+(1.63).Detailed analysis of ionic hydration microstructure shows that different nanopores result in different hydration factors for the second hydration layer of Ca^(2+)and the first layer of Na+.Such different hydration factors corresponding to the dehydration ability can effectively evaluate the separation performance.In addition,the breaking of hydrogen bonds between water molecules due to electrostatic effects can directly affect the dehydration ability.Therefore,the electrostatic effect generated by group modification will affect the ionic hydration microstructure,thus reflecting the differences in dehydration ability.This in turn affects the permeable and separation performance of cations.The results of this work provide perceptive guidelines for the application of graphene-based membranes in ion separation.展开更多
Porous materials have attracted great attention in energy and environment applications,such as metal organic frameworks(MOFs),metal aerogels,carbon aerogels,porous metal oxides.These materials could be also hybridized...Porous materials have attracted great attention in energy and environment applications,such as metal organic frameworks(MOFs),metal aerogels,carbon aerogels,porous metal oxides.These materials could be also hybridized with other materials into functional composites with superior properties.The high specific area of porous materials offer them the advantage as hosts to conduct catalytic and electrochemical reactions.On one hand,catalytic reactions include photocatalytic,p ho toe lectrocatalytic and electrocatalytic reactions over some gases.On the other hand,they can be used as electrodes in various batteries,such as alkaline metal ion batteries and electrochemical capacitors.So far,both catalysis and batteries are extremely attractive topics.There are also many obstacles to overcome in the exploration of these porous materials.The research related to porous materials for energy and environment applications is at extremely active stage,and this has motivated us to contribute with a roadmap on ’porous materials for energy and environment applications’.展开更多
Developing electrochemical energy storage devices with high energy and power densities,long cycling life,as well as low cost is of great significance.Hybrid metal-ion capacitors(MICs),commonly consisting of high energ...Developing electrochemical energy storage devices with high energy and power densities,long cycling life,as well as low cost is of great significance.Hybrid metal-ion capacitors(MICs),commonly consisting of high energy battery-type anodes and high power capacitor-type cathodes,have become a trade-off between batteries and supercapacitors.Tremendous efforts have been devoted to searching for high-performance electrode materials due to poor rate capability of anodes,low capacity of cathodes,and interior sluggish kinetic match.Carbon materials with large surface area,good electrical conductivity and stability have been considered to be ideal candidates for electrodes of MICs.In this review,the advanced carbon materials directly as cathodes and anodes of MICs are systematically summarized.Then,the key structural/chemical factors including the structure engineering,porous characteristics,and heteroatom incorporation for improving electrochemical performance of carbon materials are highlighted.Additionally,the challenges and opportunities for future research on carbon materials in MICs are also proposed.展开更多
Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In t...Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In this review,we provide a comprehensive review on these materials properties,theoretical advantages,the synthesis and modification strategies of different carbon nitride-based materials(CNBMs)and their application in existing and emerging rechargeable battery systems,such as lithium-ion batteries,sodium and potassium-ion batteries,lithium sulfur batteries,lithium oxygen batteries,lithium metal batteries,zinc-ion batteries,and solid-state batteries.The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage,i.e.,facilitate the application of first-principle studies and density functional theory for electrode material design,synthesis,and characterization of different CNBMs for the aforementioned rechargeable batteries.At last,we conclude with the challenges,and prospects of CNBMs,and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.展开更多
Energy storage and conversion have attained significant intere st owing to its important applications that reduce CO2 emission through employing green energy.Some promising technologies are included metalair batteries...Energy storage and conversion have attained significant intere st owing to its important applications that reduce CO2 emission through employing green energy.Some promising technologies are included metalair batteries,metal-sulfur batteries,metal-ion batteries,electrochemical capacitors,etc.Here,metal elements are involved with lithium,sodium,and magnesium.For these devices,electrode materials are of importance to obtain high performance.Two-dimensional(2 D) materials are a large kind of layered structured materials with promising future as energy storage materials,which include graphene,black phosporu s,MXenes,covalent organic frameworks(COFs),2 D oxides,2 D chalcogenides,and others.Great progress has been achieved to go ahead for 2 D materials in energy storage and conversion.More researchers will join in this research field.Under the background,it has motivated us to contribute with a roadmap on ’two-dimensional materials for energy storage and conversion.展开更多
Developing new types of rechargeable metal-ion batteries beyond lithium-ions,including alkaline ion(such as Na+,K+)and multivalent ion(such as Mg 2+,Zn 2+,Ca 2+and Al 3+)batteries,is progressing quickly towards large-...Developing new types of rechargeable metal-ion batteries beyond lithium-ions,including alkaline ion(such as Na+,K+)and multivalent ion(such as Mg 2+,Zn 2+,Ca 2+and Al 3+)batteries,is progressing quickly towards large-scale energy storage systems.However,the major obstacle to their large-scale applications has been a lack of appropriate electrode materials with reversible metal ions insertion/extraction be-havior,resulting in inferior electrochemical performance.Here we develop a well-designed MoS_(2)/MoO_(2) hybrid nanosheets anchored on carbon cloth(MoS_(2)/MoO_(2)/CC)as electrode materials.This rational de-sign can effectively shorten ion diffusion distance,increase electric conductivity of the electrode,and buffer volume change.Benefiting from the synergistic effect of structural and compositional features,the MoS_(2)/MoO_(2)/CC electrode exhibits high initial reversible capacities(326 mA h g^(−1) at 0.1 A g^(−1) in magnesium-ion storage;1270 mA h g^(−1) at 0.1 A g^(−1) in sodium-ion storage),excellent rate capacities(57 mA h g^(−1) at 10 A g^(−1) in magnesium-ion storage;335 mA h g^(−1) at 5 A g^(−1) in sodium-ion storage)and long-term cycling stability(105 mA h g^(−1) after 600 cycle at 1 A g^(−1) in magnesium-ion storage;208 mA h g^(−1) after 600 cycles at 5 A g^(−1) in sodium-ion storage).We expect that the multi-engineering strategy will provide some valuable insights for the development of other advanced electrode materials for high-performance metal-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(52002297)National Key R&D Program of China(2022VFB2404800)+1 种基金Wuhan Yellow Crane Talents Program,China Postdoctoral Science Foundation(No.2024M752495)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.
基金supported by the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(Grant No.RS-2023-00217581),Republic of Korea。
文摘Hybrid electrochemical devices(HEDs),which consist of one faradaic electrode and the other capacitive electrode,are considered as promising technologies owing to their high ion storage capacity,excellent rate performance,and long cyclability.In particular,MXenes have been extensively investigated as faradaic electrodes of HEDs owing to their fast electron and ion transport capabilities and diverse and tunable surface modifications.Herein,we provide a comprehensive review on the design strategies for enhancing the electrochemical performances of MXenes in HEDs,focusing on interlayer engineering,surface modification,and hybrid formation.We also summarize the recent advancement in the use of MXenes in metal-ion hybrid capacitors and hybrid capacitive deionization.Lastly,we address the current challenges for the practical application of MXene-based hybrid devices and offer our perspectives for future research directions.This review aims to provide insights into innovative MXene design strategies for electrochemical energy storage and water purification by elucidating the correlations between material chemistry and electrochemical properties of MXenes.
基金supported by the National Natural Science Foundation of China(52203364,52188101,52020105010)the National Key R&D Program of China(2021YFB3800300,2022YFB3803400)+2 种基金the Strategic Priority Research Program of Chinese Academy of Science(XDA22010602)the China Postdoctoral Science Foundation(2022M713214)the China National Postdoctoral Program for Innovative Talents(BX2021321)。
文摘Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manufacturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development.
基金supported by the National Natural Science Foundation of China(No.52102470).
文摘To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.
基金supported by the International Collaboration Program of Jilin Provincial Department of Science and Technology,China(20230402051GH)the National Natural Science Foundation of China(51932003,51902050)+2 种基金the Open Project Program of Key Laboratory of Preparation and Application of Environmental friendly Materials(Jilin Normal University)of Ministry of China(2021006)the Fundamental Research Funds for the Central Universities JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.
基金National Natural Science Foundation of China,Grant/Award Number:22309062Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515110052Jihua Laboratory,Grant/Award Numbers:X200191TL200,X220301XS220。
文摘The typical metal chloride-graphite intercalation compounds(MC-GICs)inherit intercalation capacity,high charge conductivity,and high tap density from graphite,and these are considered as one of the promising alternatives of graphite anode in rechargeable metal-ion batteries(MIBs).Notably,the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs.The optimization of both graphite host and metal chloride species with specific structures endows MC-GICs with design feasibility for different application requirements of different MIBs,such as several times the actual capacity compared to graphite anodes,rapid migration of large carriers,and other properties.Herein,a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC-GICs and their interesting performance features of full potential application in rechargeable MIBs.Based on the existing research of MC-GICs,necessary improvements and prospects in the near future have been put forward.
基金the Khalifa University of Science and Technology through the internal grant RIG-2023-01.
文摘The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover new BN-doped biphenylene networks(C_(4)BN,C_(2)B_(2)N_(2),and B_(4)N_(4))and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations.The thermodynamic,thermal,and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks.Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor.The BN biphenylene network shows an HSE06 band gap of 3.06 eV,smaller than h-BN.The C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks offer Li(K)adsorption energy of-0.56 eV(-0.81 eV)and-0.14 eV(-0.28 eV),respectively,with a low diffusion barrier of 178 meV(58 meV)and 251 meV(79 meV),and a large diffusion constant of 8.50×10^(-5)cm^(2)=s(8.78×10^(-3)cm^(2)=s)and 5.33×10^(-6)cm^(2)=s(4.12×10^(-3)cm^(2)=s),respectively.The calculated Li(K)theoretical capacity of C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks is 940.21 mA h g^(-1)(899.01 mA h g^(-1))and 768.08 mA h g^(-1)(808.47 mA h g^(-1)),with a low open circuit voltage of 0.34 V(0.23 V),and 0.17 V(0.13 V),resulting in very high energy density of 2576.18 mW h g^(-1)(2445.31 mW h g^(-1))and 2181.35 mW h g^(-1)(2263.72 mW h g^(-1)),respectively.Only a slight volume change of 1.6%confirms the robustness of BN-doped carbon-based biphenylene networks.Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.
基金supported by the National Natural Science Foundation of China(No.52072217)the National Key Research and Development Program of China(No.2022YFB3807700)+2 种基金the Joint Funds of the Hubei Natural Science Foundation Innovation and Development(No.2022CFD034)Hubei Natural Science Foundation Innovation Group Project(No.2022CFA020)the Major Technological Innovation Project of Hubei Science and Technology Department(No.2019AAA164).
文摘With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2018R1A6A1A03025708).
文摘Aqueous zinc(Zn)-ion batteries(AZIBs)have gained significant interest in energy storage due to several unique advantages.Utilizing waterbased electrolytes enhances environmental sustainability,while the abundance and affordability of Zn offer economic benefits.Manganese(Mn)-based materials,commonly used as cathodes in these batteries,provide high theoretical capacity,high electrical conductivity,and good structural stability.However,these materials suffer from capacity degradation over repeated cycles due to structural collapse and limited conductivity.To address this problem,we synthesized a magnesium(Mg)-and Mn-based composite,Mg^(2+)-Mn_(3)O_(4),using the hydrothermal method with an optimized amount of ammonium hydroxide(NH_(4)OH)solution.This approach effectively stabilizes the structure during cycling,enhancing both capacity retention and conductivity.The Zn^(2+)/H+intercalation/deintercalation process was confirmed by experimental results and ex-situ X-ray diffraction analysis,which demonstrates that Mg^(2+),along with optimized NH_(4)OH amount,prevents structural collapse and improves conductivity.Under optimal process conditions,the composite electrode(Mg^(2+)-Mn_(3)O_(4)–8 ml)achieved a capacity of 173.58 mA h g^(-1) at 0.5 A g^(-1),with excellent rate performance of 71.39 mA h g^(-1) at 10 A g^(-1).Remarkably,even at 5 A g^(-1),the electrode maintained a capacity of 86.87 mA h g^(-1) over 2100 cycles,underscoring the role of Mg^(2+)and NH_(4)OH in enhancing the reversible insertion/extraction stability of Zn^(2+)in Mn-based layered materials.This study presents a novel strategy for metal-ion incorporation in Mn-based AZIBs,offering insights into the optimization of cathode materials and advancing research on associated storage mechanisms.
基金the National Natural Science Foundation of China(No.51704060)the Fundamental Research Funds for the Central Universities(No.N172505002)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B16009)。
文摘Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.
文摘The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies.
基金supported by the National Research Foundation of Korea(NRF)grant sponsored by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs.
基金Ziyi Feng is now pursuing her Doctor degree in the School of Dalian University of Technology.She current research interest mainly lies in the aqueous Zn-ion batteriesCorresponding author:Yifu Zhang works in School of Chemistry at Dalian University of Technology(DUT).He received his Bachelor's degree(2008)and Ph.D.degree(2013)from Wuhan University.During 2018.12-2019.12,he worked with Prof.John Wang as a visiting scholar at the Department of Materials Science and Engineering,National University of Singapore.His current research focuses on vanadium oxides,silicates and their carbon composites for energy storage and conversation including supercapacitors,aqueous Zn-ion batteries,and oxygen evolution reaction.He has published more than 200 papers in peerreviewed journals.He is selected as Elsevier China Highly Cited Scholarand RSC Highly Cited Top 1%,E-mail addresses:yfzhang@dlut.edu.cnCorresponding author:Tao Hu,E-mail addresses:inorchem@dlut.edu.cn。
文摘Layered materials with adjustable framework,as the most potential cathode materials for aqueous rechargeable zinc ion batterie,have high capacity,permit of rapid ion diffusion,and charge transfer channels.Previous studies have widely investigated their preparation and storage mechanism,but the intrinsic relationship between the structural design of layered cathode materials and electrochemical performance has not been well established.In this work,based on the first principles calculations and experiments,a crucial strategy of pre-intercalated metalions in vanadium oxide interlayer with administrable p-band center(ε_(p))of O is explored to enhance Zn^(2+)storage.This regulation of the degree of covalent bond and the average charge of O atoms varies the binding energy between Zn^(2+)and O,thus affecting the intercalation/de-intercalation of Zn2þ.The present study demonstrates thatεp of O can be used as an important indicator to boost Zn2þstorage,which provides a new concept toward the controlled design and application of layered materials.
文摘BACKGROUND Among the various complications associated with total hip arthroplasty(THA)periprosthetic osteolysis and wear phenomena due to the release of metal particles,are two of the most common and have been reported to be correlated because of inflammatory responses directed towards released particles that generally activate macrophagic osteolytic effects.Therein,new masses known as pseudotumors can appear in soft tissues around a prosthetic implant.To date,there is paucity of reliable data from studies investigating for any association between the above mentioned adverse events.AIM To investigate for the existence of any association between serum and urine concentrations of metal-ions released in THA and periprosthetic osteolysis for modular neck and monolithic implants.METHODS Overall,76 patients were divided into three groups according to the type of hip prosthesis implants:Monoblock,modular with metal head and modular with ceramic head.With an average f-up of 4 years,we conducted a radiological evaluation in order to detect any area of osteolysis around the prosthesis of both the femur and the acetabulum.Moreover,serum and urinary tests were performed to assess the values of Chromium and Cobalt released.Statistical analysis was performed to determine any association between the ion release and osteolysis.RESULTS For the 3 study groups,the monolithic,modular ceramic-headed and modular metal-headed implants had different incidences of osteolysis events,which were higher for the modular implants.Furthermore,the most serious of these(grade 3)were detected almost exclusively for the modular implants with metal heads.A mapping of the affected areas was performed revealing that the highest incidences of osteolysis were evidenced in the pertrochanteric region at the femur level,and in the supero-external region at the acetabular level.Regarding the evaluation of the release of metals-ions from wear processes,serum and urinary chromium and cobalt values were found to be higher in cases of modularity,and even more so for those with metal head.Statistical linear correlation test results suggested positive correlations between increasing metal concentrations and incidences areas of osteolysis.However,no cases of pseudo-tumor were detected.CONCLUSION Future studies are needed to identify risk factors that increase peri-prosthetic metal ion levels and whether these factors might be implicated in the triggering of local events,including osteolysis and aseptic loosening.
基金supported by the National Science Foundation of China(21878144,21838004 and 21776123)the Foundation for Innovative Research Groups of the National Natural Science Foun-dation of China(21921006).
文摘Ca^(2+)/Na+separation is a common problem in industrial applications,biological and medical fields.However,Ca^(2+)and Na+have similar ionic radii and hydration radii,thus Ca^(2+)/Na+separation is challenging.Inspired by biological channels,group modification is one of the effective methods to improve the separation performance.In this work,molecular dynamics simulations were performed to investigate the effects of different functional groups(COO,NH3+)on the separation performance of Ca^(2+)and Na+through graphene nanopores under an electric field.The pristine graphene nanopore was used for comparison.Results showed that three types of nanopores preferred Ca^(2+)to Na+,and Ca^(2+)/Na+selectivity followed the order of GE-COO(4.06)>GE(1.85)>GE-NH3+(1.63).Detailed analysis of ionic hydration microstructure shows that different nanopores result in different hydration factors for the second hydration layer of Ca^(2+)and the first layer of Na+.Such different hydration factors corresponding to the dehydration ability can effectively evaluate the separation performance.In addition,the breaking of hydrogen bonds between water molecules due to electrostatic effects can directly affect the dehydration ability.Therefore,the electrostatic effect generated by group modification will affect the ionic hydration microstructure,thus reflecting the differences in dehydration ability.This in turn affects the permeable and separation performance of cations.The results of this work provide perceptive guidelines for the application of graphene-based membranes in ion separation.
基金financially support by an Australian Research Council (ARC) Discovery Project (No. DP200100965)a Griffith University Postdoctoral Fellowship
文摘Porous materials have attracted great attention in energy and environment applications,such as metal organic frameworks(MOFs),metal aerogels,carbon aerogels,porous metal oxides.These materials could be also hybridized with other materials into functional composites with superior properties.The high specific area of porous materials offer them the advantage as hosts to conduct catalytic and electrochemical reactions.On one hand,catalytic reactions include photocatalytic,p ho toe lectrocatalytic and electrocatalytic reactions over some gases.On the other hand,they can be used as electrodes in various batteries,such as alkaline metal ion batteries and electrochemical capacitors.So far,both catalysis and batteries are extremely attractive topics.There are also many obstacles to overcome in the exploration of these porous materials.The research related to porous materials for energy and environment applications is at extremely active stage,and this has motivated us to contribute with a roadmap on ’porous materials for energy and environment applications’.
基金financially supported by the National Natural Science Foundation of China(Nos.51872005,52072002 and 22108003)the Natural Science Foundation of Anhui Provincial Education Department(No.KJ2021A0401)+1 种基金WanJiang Scholar ProgramAnhui International Research Center of Energy Materials Green Manufacturing and Biotechnology。
文摘Developing electrochemical energy storage devices with high energy and power densities,long cycling life,as well as low cost is of great significance.Hybrid metal-ion capacitors(MICs),commonly consisting of high energy battery-type anodes and high power capacitor-type cathodes,have become a trade-off between batteries and supercapacitors.Tremendous efforts have been devoted to searching for high-performance electrode materials due to poor rate capability of anodes,low capacity of cathodes,and interior sluggish kinetic match.Carbon materials with large surface area,good electrical conductivity and stability have been considered to be ideal candidates for electrodes of MICs.In this review,the advanced carbon materials directly as cathodes and anodes of MICs are systematically summarized.Then,the key structural/chemical factors including the structure engineering,porous characteristics,and heteroatom incorporation for improving electrochemical performance of carbon materials are highlighted.Additionally,the challenges and opportunities for future research on carbon materials in MICs are also proposed.
基金the Australia Research Council Discovery Projects(DP160102627 and DP1701048343)of AustraliaShenzhen Peacock Plan of China(KQTD2016112915051055)the 111 Project(D20015)of China Three Gorges University.
文摘Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In this review,we provide a comprehensive review on these materials properties,theoretical advantages,the synthesis and modification strategies of different carbon nitride-based materials(CNBMs)and their application in existing and emerging rechargeable battery systems,such as lithium-ion batteries,sodium and potassium-ion batteries,lithium sulfur batteries,lithium oxygen batteries,lithium metal batteries,zinc-ion batteries,and solid-state batteries.The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage,i.e.,facilitate the application of first-principle studies and density functional theory for electrode material design,synthesis,and characterization of different CNBMs for the aforementioned rechargeable batteries.At last,we conclude with the challenges,and prospects of CNBMs,and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.
基金supported by the National Natural Science Foundation of China (No. 21601148)the Natural Science Foundation of Fujian Province (No. 2017J05090)
文摘Energy storage and conversion have attained significant intere st owing to its important applications that reduce CO2 emission through employing green energy.Some promising technologies are included metalair batteries,metal-sulfur batteries,metal-ion batteries,electrochemical capacitors,etc.Here,metal elements are involved with lithium,sodium,and magnesium.For these devices,electrode materials are of importance to obtain high performance.Two-dimensional(2 D) materials are a large kind of layered structured materials with promising future as energy storage materials,which include graphene,black phosporu s,MXenes,covalent organic frameworks(COFs),2 D oxides,2 D chalcogenides,and others.Great progress has been achieved to go ahead for 2 D materials in energy storage and conversion.More researchers will join in this research field.Under the background,it has motivated us to contribute with a roadmap on ’two-dimensional materials for energy storage and conversion.
基金financially supported by in part the National Science Fund for Distinguished Young Scholars (No.51625102)the National Natural Science Foundation of China (Nos.51971065,22075173)+1 种基金the Innovation Program of Shanghai Municipal Educa-tion Commission (No.2019-01-07-00-07-E00028)the Science and Science and Technology Commission of Shanghai Municipality (Nos.19DZ2271100 and 21010501100).
文摘Developing new types of rechargeable metal-ion batteries beyond lithium-ions,including alkaline ion(such as Na+,K+)and multivalent ion(such as Mg 2+,Zn 2+,Ca 2+and Al 3+)batteries,is progressing quickly towards large-scale energy storage systems.However,the major obstacle to their large-scale applications has been a lack of appropriate electrode materials with reversible metal ions insertion/extraction be-havior,resulting in inferior electrochemical performance.Here we develop a well-designed MoS_(2)/MoO_(2) hybrid nanosheets anchored on carbon cloth(MoS_(2)/MoO_(2)/CC)as electrode materials.This rational de-sign can effectively shorten ion diffusion distance,increase electric conductivity of the electrode,and buffer volume change.Benefiting from the synergistic effect of structural and compositional features,the MoS_(2)/MoO_(2)/CC electrode exhibits high initial reversible capacities(326 mA h g^(−1) at 0.1 A g^(−1) in magnesium-ion storage;1270 mA h g^(−1) at 0.1 A g^(−1) in sodium-ion storage),excellent rate capacities(57 mA h g^(−1) at 10 A g^(−1) in magnesium-ion storage;335 mA h g^(−1) at 5 A g^(−1) in sodium-ion storage)and long-term cycling stability(105 mA h g^(−1) after 600 cycle at 1 A g^(−1) in magnesium-ion storage;208 mA h g^(−1) after 600 cycles at 5 A g^(−1) in sodium-ion storage).We expect that the multi-engineering strategy will provide some valuable insights for the development of other advanced electrode materials for high-performance metal-ion batteries.