期刊文献+
共找到139,449篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and characterization of metal carbenes M_(2)C_(3)-(M=Os,Ir,Pt)
1
作者 Jianpeng Yang Ziheng Zhang +4 位作者 Gang Li Juntao Cao Qiangshan Jing Hua Xie Ling Jiang 《Chinese Journal of Structural Chemistry》 2025年第9期8-10,共3页
Transition metals(TMs)are widely recognized for their valuable catalytic properties in various fields,from environmental protection to industrial application[1].Recently,there has been increasing interest in catalysts... Transition metals(TMs)are widely recognized for their valuable catalytic properties in various fields,from environmental protection to industrial application[1].Recently,there has been increasing interest in catalysts containing late TMs,particularly noble metals such as osmium,iridium and platinum.For instance,some studies have demonstrated that the Os atom serves as metal centers that coordinates alkanes,enabling the activation of C-H bonds in the first step[2].Characterization of the geometric and electronic structures of TM catalysts is essential for exploring the structure-reactivity relationship and elucidating complex mechanisms. 展开更多
关键词 transition metals tms metal carbenes geometric electron catalytic properties metal centers transition metals coordinates alkanesenabling noble metals
原文传递
Solar-Driven Redox Reactions with Metal Halide Perovskites Heterogeneous Structures
2
作者 Qing Guo Jin‑Dan Zhang +1 位作者 Jian Li Xiyuan Feng 《Nano-Micro Letters》 2026年第2期337-367,共31页
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks... Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed. 展开更多
关键词 metal halide perovskite HETEROJUNCTION Redox reaction Solar-to-chemical conversion
在线阅读 下载PDF
Dynamics of metal anode morphology:Insights into aqueous Zn and Sn metal batteries at different current densities
3
作者 Young-Hoon Lee Yunseo Jeoun +5 位作者 Beom-Keun Cho Eunbin Park Ji Hwan Kim Kwang-Soon Ahn Yung-Eun Sung Seung-Ho Yu 《Journal of Energy Chemistry》 2025年第7期544-552,共9页
Aqueous batteries,renowned for their cost-effectiveness and non-flammability,have attracted considerable attention in the realm of batteries featuring Zn-based and Sn-based configurations.These configurations employ Z... Aqueous batteries,renowned for their cost-effectiveness and non-flammability,have attracted considerable attention in the realm of batteries featuring Zn-based and Sn-based configurations.These configurations employ Zn and Sn metal anodes,respectively.While the growth patterns of Zn under various current densities have been extensively studied,there has been a scarcity of research on Sn dendrite growth.Our operando imaging analysis reveals that,unlike Zn,Sn forms sharp dendrites at high current density emphasizing the crucial necessity for implementing strategies to suppress the dendrites formation.To address this issue,we introduced a carbon nanotube(CNT)layer on copper foil,effectively preventing the formation of Sn dendrites under high current density,thus enabling the high-current operation of Sn metal batteries.We believe that our work highlights the importance of suppressing dendrite formation in aqueous Sn metal batteries operating at high current density and introduces a fresh perspective on mitigating Sn dendrite formation. 展开更多
关键词 Zn metal battery Snmetal battery Aqueous battery metal anode metal growth DENDRITE
在线阅读 下载PDF
Alkali metal pyridinolate/piperidinolate pairs:A new type of materials for efficient reversible hydrogen storage
4
作者 Alexis Munyentwali Yang Yu +7 位作者 Xingchi Zhou Wei Zhou Qijun Pei Khai C.Tan Anan Wu Hui Wu Teng He Ping Chen 《Journal of Energy Chemistry》 2025年第4期353-360,共8页
Chemical hydrogen storage in organic materials is a promising method thanks to its high storage density,reversibility,and safety.However,the dehydrogenation process of organic materials requires high temperatures due ... Chemical hydrogen storage in organic materials is a promising method thanks to its high storage density,reversibility,and safety.However,the dehydrogenation process of organic materials requires high temperatures due to their unfavorable thermodynamic properties.This study proposes a strategy to design a new type of hydrogen storage materials,i.e.,alkali metal pyridinolate/piperidinolate pairs,by combining the effects of a heteroatom and an alkali metal in one molecule to achieve suitable dehydrogenation thermodynamics along with high hydrogen storage capacities.These air-stable compounds can be synthesized using low-cost reactants and water as a green solvent.Thermodynamic predictions indicate that enthalpy changes of dehydrogenation(ΔH_(d))can be significantly reduced to the optimal range for efficient hydrogen release,exemplified by lithium 2-piperidinolate with a 5.6 wt%hydrogen capacity and a suitableΔH_(d)of 32.2 kJ/mol-H_(2).Experimental results obtained using sodium systems validate the computational predictions,demonstrating reversible hydrogen storage even below 100℃.The superior hydrogen desorption performance of alkali metal piperidinolates could be attributed to their suitableΔH_(d)induced by the combined effect of ring nitrogen and metal substitution on their structures.This study not only reports new low-cost hydrogen storage materials but also provides a rational design strategy for developing metalorganic compounds possessing high hydrogen capacities and suitable thermodynamics for efficient hydrogen storage. 展开更多
关键词 Hydrogen storage metalorganic compounds Alkali metal pyridinolates Ring nitrogen Alkali metal substitution
在线阅读 下载PDF
Advancements in energetic metal-organic frameworks, alkali and alkaline earth metal salts, and transition metal complexes: Predictive models for detonation velocity, heat, and pressure
5
作者 Mohammad Hossein Keshavarz Nasser Hassanzadeh Mohammad Jafari 《Defence Technology(防务技术)》 2025年第7期96-112,共17页
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu... Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models. 展开更多
关键词 metal-organic framework Alkali and alkaline earth metal salt Transition metal complexe Detonation performance Decomposition pathway Predictive reliability
在线阅读 下载PDF
Uniform single-crystal mesoporous metal-organic frameworks with tunable architectures
6
作者 Xin Chen Zaiwang Zhao Yujuan Zhao 《Chinese Journal of Structural Chemistry》 2025年第9期5-7,共3页
As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 n... As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 nm)severely limits their application in scenarios such as macromolecular mass transfer and so on.In order to overcome this re-striction,mesoporous MOFs(meso-MOFs)with a larger aperture(2-50 nm)have attracted much attention due to their potential applications in biological macromolecular catalysis,energy storage and other fields.To date,how to accurately regulate its mesopore topology and pore ordering still faces important technical challenges. 展开更多
关键词 uniform single crystal mesoporous metal organic frameworks meso MOFs pore ordering biological macromolecular catalysisene crystalline porous materialsmetal organic mesoporous metal organic frameworks macromolecular mass transfer pore topology
原文传递
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:6
7
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Metal separations of interest to the Chinese metallurgical industry 被引量:3
8
作者 S.R.Izatt N.E.Izatt R.L.Bruening 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期22-29,共8页
IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high p... IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high purity separation product of maximum added value at a competitive cost.SuperLig products have high selectivity for many target species which can include metal ions,anions,and neutral molecules.In operation,the SuperLig product is first placed in a packed column.A solution containing a mixture of the target species and other chemical species is then passed through the column.The target species is removed selectively by the SuperLig product,the column is washed to remove residual feed solution,and the target species is recovered by a minimal quantity of eluent.The result is a pure and concentrated species that can be kept for its value or disposed of safely.The process is environmentally and ecologically friendly with no organic solvents being used.This paper provides a review of some examples of applications of MRT to separations of interest to the Chinese metallurgical industry.Included are several applications of MRT,including Pd separations from Pt metal refinery streams and low-grade spent catalyst wastes,Rh recovery from spent auto catalyst and other feeds,Re removal from selected impurity ions,Cd removal from Co electrolyte,Bi removal from Cu electrolyte,In and Ge separations from difficult matrices,and removal of bivalent first transition series and other metal ions from acid mine drainage(Berkeley Pit,Montana).Finally,the potential application of MRT to separations involving the recovery of rare earth metals and Li from low-level waste solutions and end-of-life products is discussed. 展开更多
关键词 selective and environmentally friendly metal separations molecular recognition technology SuperLig platinum group metals minor metals transition series metals RHENIUM cadmium indium germanium BISMUTH rare earth metals lithium
原文传递
Advancements in metal-iodine batteries: progress and perspectives 被引量:2
9
作者 Zi-Zhou Shen Dian-Heng Yu +6 位作者 Hong-Ye Ding Yi Peng Yi-Hao Chen Jing-Wen Zhao Heng-Yue Xu Xiao-Tian Guo Huan Pang 《Rare Metals》 2025年第4期2143-2179,共37页
Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the c... Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed. 展开更多
关键词 metal-iodine battery Shuttle effect metal dendrite Functional modification
原文传递
Polyphenol-metal coordination derived high-entropy alloy as bifunctional oxygen electrocatalyst for Zn-air batteries 被引量:1
10
作者 Meng-Di Hao Qin Li +3 位作者 Jing-Han Sun Deng Liu Hua-Long Yu Rui Liu 《Rare Metals》 2025年第4期2836-2844,共9页
High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-poly... High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs. 展开更多
关键词 oxygen reduction reaction zinc air batteries metal sp bifunctional oxygen electrocatalyst oxygen evolution reaction oer nanoparticles polyphenol metal coordination hea nps
原文传递
Tremendously enhanced catalytic performance of Fe(Ⅲ)/peroxymonosulfate process by trace Cu(Ⅱ):A high-valent metals domination in organics removal 被引量:1
11
作者 Jieli Ou Yiqing Liu +4 位作者 Linyue Zhang Zhenran Wang Yuqi Tang Yongsheng Fu Dandan Zhao 《Journal of Environmental Sciences》 2025年第1期487-497,共11页
Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu... Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions. 展开更多
关键词 PEROXYMONOSULFATE Bimetallic catalyst BORATE High-valent metals COMPLEXATION
原文传递
Advances in modification of metal and noble metal nanomaterials for metal oxide gas sensors:a review 被引量:1
12
作者 Dan-Hong Gao Qiu-Chen Yu +4 位作者 Mesfin A.Kebeded Yu-Yan Zhuang Sheng Huang Ming-Zhi Jiao Xin-Jian He 《Rare Metals》 2025年第3期1443-1496,共54页
Highly sensitive gas sensors play an important role in applications,such as environmental monitoring,medical diagnostics and food testing.This paper reviews recent advances in metal-doped and noble metal-decorated che... Highly sensitive gas sensors play an important role in applications,such as environmental monitoring,medical diagnostics and food testing.This paper reviews recent advances in metal-doped and noble metal-decorated chemo-resistive gas sensors with different nanostructures(ZnO,SnO_(2),In_(2)O_(3)and Fe_(2)O_(3)).It mainly includes the doping of metals such as Al,Fe and Cu,and the modification of noble metals such as Pd,Pt and Au,and introduces the bimetallic-modified materials possessing greater advantages than single metals in enhancing gas-sensitive performance.The results and problems of room-temperature detection of perovskite and metal oxide composite structural materials are also discussed.In addition,the potential applications of micro-electro-mechanical system(MEMS)gas sensing arrays and electronic nose smart sensing devices in disease diagnosis and environmental monitoring are presented through their limitations and development trends in areas such as smart homes.Finally,the main challenges and future prospects of metal oxide gas sensors are presented. 展开更多
关键词 BImetalS Noble metals Gas-sensing mechanisms Room-temperature detection Gas-sensing arrays Intelligent sensing
原文传递
The low-temperature deposition of a zincophilic carbon layer on the Zn foil for long-life zinc metal batteries
13
作者 LI Chun-yu ZHANG Ming-hui +2 位作者 LANG Xin-yue CHEN Ye DONG Yan-feng 《新型炭材料(中英文)》 北大核心 2025年第1期178-187,共10页
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq... Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anodes Low-temperature deposition Zincophilic carbon layer High performance
在线阅读 下载PDF
Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd^(2+)and Pb^(2+)
14
作者 GUO Wei GUO Zhuoyi +3 位作者 LI Xiaoxin ZHANG Wei YAN Juanzhi GUO Tingting 《无机化学学报》 北大核心 2025年第9期1889-1902,共14页
A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.The... A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744. 展开更多
关键词 metal-organic frameworks electrochemical sensor heavy metal ions square wave anodic stripping voltammetry
在线阅读 下载PDF
Robust metal nanoclusters for electrocatalytic synthesis
15
作者 Jingjing Zhang Xinrui Gu Gao Li 《Chinese Journal of Structural Chemistry》 2025年第8期4-5,共2页
Ligand-stabilized metal nanoclusters with atomic precision have garnered significant attention for applications in catalysis,biomedicine,and nanoelectronics due to their tunable structures and unique physicochemical p... Ligand-stabilized metal nanoclusters with atomic precision have garnered significant attention for applications in catalysis,biomedicine,and nanoelectronics due to their tunable structures and unique physicochemical properties[1-3].While transition metals such as Au,Ag,Pt,and Pd dominate the core composition,surface ligands are predominantly limited to phosphines,thiols,alkynes,and carbenes.Among these,N-heterocyclic carbenes(NHCs)have emerged as a superior ligand class due to their dual capacity for strongσ-donation andπ-back bonding,which stabilizes diverse metal oxidation states and enhances metal-ligand interactions.Notably,NHC-protected clusters exhibit exceptional thermal stability attributed to CH-π/π-πinteractions and enlarged HOMO-LUMO gaps compared to thiol or phosphine analogues.Despite progress,synthetic limitations persist due to NHCs'sensitivity under harsh conditions.Current methods rely on direct reduction of metal-carbene precursors or ligand exchange reactions,with heterogeneous NHC-capped systems remaining unexplored. 展开更多
关键词 PHOSPHINES atomic precision ligand stabilized nanoclusters electrocatalytic synthesis transition metals ALKYNES metal nanoclusters THIOLS
原文传递
Global exploration trends and prospects for lithium,cobalt,and nickel battery metals in 2024
16
作者 Ji Chen Yun Yu +2 位作者 Jian-feng Yang Ben-Yang Xu Qian Cao 《China Geology》 2025年第4期869-870,共2页
Exploration budgets for primary battery metals-nickel,lithium and cobalt-tempered in 2024 at$1.697 billion,reflecting a marginal 0.4%decline and a virtually flat annual total,compared to$1.704 billion in 2023.Below is... Exploration budgets for primary battery metals-nickel,lithium and cobalt-tempered in 2024 at$1.697 billion,reflecting a marginal 0.4%decline and a virtually flat annual total,compared to$1.704 billion in 2023.Below is an introduction to the 2024 global exploration trends and prospects for lithium,cobalt,and nickel battery metals. 展开更多
关键词 global prospects LITHIUM COBALT battery metals NICKEL primary battery metals nickellithium exploration trends
在线阅读 下载PDF
Adaptable liquid metal putty for high electromagnetic shielding
17
作者 Lulu Liu Mengmeng Lin +7 位作者 Linan Wang Zhen Liu Li Guan Quanlin Li Hongxia Lu Zhongyi Wang Biao Zhao Rui Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1987-1996,共10页
The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interfe... The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interference(EMI),and multifunctional materi-als.However,fabricating desirable shielding materials by directly coating LMs on soft polymer substrates remains a challenge because of the huge surface tension and weak wettability of LMs.In this study,Ga-based composite paste is prepared from a mixture of Ga and dia-mond nonmetallic particles through ultrasonic fragmentation.At various temperatures,the resulting LM composite putty(LMP)exhibits soft and hard properties and can thus be molded into specific shapes according to application needs.In addition,the composite can be eas-ily coated onto polymer substrates,such as thermoplastic polyurethane(TPU)elastomer.The fabricated LMP–TPU exhibits an impress-ive shape deformation capacity of 1100%,demonstrating exceptional tensile properties and achieving electromagnetic interference–shielding effectiveness of up to 52 dB.Furthermore,it retains an ultrahigh conductivity of 20000 S/m,even under a strain of 600%.This feature further makes it a highly competitive multifunctional material. 展开更多
关键词 liquid metal electromagnetic interference diamond putty infrared stealth giant strain phase tunable reconfigurable circuits metallic conductivity
在线阅读 下载PDF
Low-Cost,Screen-Printed Silver Metal Complex Inks for Silicon Heterojunction Solar Cells
18
作者 Thien Truong Matthew Page +11 位作者 Sneh Sinha Markus Kaupa Mitchell Smith Jennifer Selvidge Harvey Guthrey William Nemeth San Theingi Brett Walker Myles Steiner Pauls Stradins Melbs LeMieux David LYoung 《Energy & Environmental Materials》 2025年第6期252-260,共9页
Screen printing using metal particle pastes,the current photovoltaic industry metallization standard,provides fast and reliable metal grids for silicon solar cells.Recently,metal complex or reactive metal inks are att... Screen printing using metal particle pastes,the current photovoltaic industry metallization standard,provides fast and reliable metal grids for silicon solar cells.Recently,metal complex or reactive metal inks are attracting research interest due to their significantly low cost and higher performance compared to traditional nanoparticle silver pastes.In this work,we demonstrate,for the first time,screen-printed high-efficiency silicon heterojunction solar cells metallized by silver metal complex inks on industrial G1-size(158.75×158.75 mm^(2))wafers. 展开更多
关键词 metalLIZATION reactive metal inks screen printing silicon heterojunction solar cells
在线阅读 下载PDF
Transition metals in water treatment:from fundamental mechanisms to practical applications
19
作者 Yang Zhao Han Jiang +3 位作者 Feng Yang Rui Wang Yu-Qing Lu Yi-Fan Pan 《Rare Metals》 2025年第8期5258-5278,共21页
Transition metals have garnered significant attention for their roles in addressing energy shortages and environmental water pollution.Their multivalent states and unique electron transfer properties facilitate charge... Transition metals have garnered significant attention for their roles in addressing energy shortages and environmental water pollution.Their multivalent states and unique electron transfer properties facilitate charge transfer in the conversion reaction,expedite energy conversion,and achieve low-energy water treatment.This review comprehensively explores the fundamental mechanisms and practical applications of transition metals in water treatment,including adsorption,photocatalysis,electrocatalysis,photoelectrocatalysis,and other technologies.The feasibility of water treatment using transition metal-based materials is demonstrated through theoretical studies on typical transition metals employed in these water treatment technologies while emphasizing the potential for optimizing material performance through strategies like structural design,defect engineering,crystal engineering,composite materials,surface modification,and atomic catalysts.In addition,the utilization of transition metal-based materials in practical wastewater treatment is comprehensively reviewed.Finally,the challenges and perspectives of transition metal-based materials in practical wastewater treatment are outlined,providing a theoretical foundation and guidance for future research and engineering advancements. 展开更多
关键词 Transition metals Water treatment Charge transfer Practical applications metal toxicity
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部