期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hybrid Models of Multi-CNN Features with ACO Algorithm for MRI Analysis for Early Detection of Multiple Sclerosis
1
作者 Mohammed Alshahrani Mohammed Al-Jabbar +3 位作者 Ebrahim Mohammed Senan Fatima Ali Amer jid Almahri Sultan Ahmed Almalki Eman A.Alshari 《Computer Modeling in Engineering & Sciences》 2025年第6期3639-3675,共37页
Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making ... Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy. 展开更多
关键词 ResNet101 DenseNet201 MobileNet XGBoost multi-CNN features mesbs ACO GVF multiple sclerosis
暂未订购
马来西亚电力集团向皮革市场扩张
2
作者 王永昌 《北京皮革(中外皮革信息版)(中)》 2004年第11期65-65,共1页
据马来西亚的一家电力公司——MESB Bhd集团董事长S·Bakar透露,在2004年6月该集团完成对Miroza公司的收购之后,这家皮革公司将成为当年该集团赢利的主要来源。Miroza在全马来西亚开设了30家高档皮革制品零售专卖店,它所生产的... 据马来西亚的一家电力公司——MESB Bhd集团董事长S·Bakar透露,在2004年6月该集团完成对Miroza公司的收购之后,这家皮革公司将成为当年该集团赢利的主要来源。Miroza在全马来西亚开设了30家高档皮革制品零售专卖店,它所生产的名牌产品还远销到泰国、菲律宾和越南。2003年,Miroza公司的税后利润达到近80万美元。 展开更多
关键词 马来西亚 MESB Bhd集团 皮革市场 发展战略
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部