A structured method to generate conformal finite element(FE)mesh for realistic 3D woven textile reinforced composite is proposed.It is based on a voxel structure mesh reconstruction framework and aims to provide accur...A structured method to generate conformal finite element(FE)mesh for realistic 3D woven textile reinforced composite is proposed.It is based on a voxel structure mesh reconstruction framework and aims to provide accurate composite model at yarn level with material properties ready for use in commercial FE software.The textile representative volume element(RVE)is generated at filament level implementing the digital element method.Yarn structure is determined by filament bundle with variant cross-section shapes along its path.Yarn surface is then extracted using the Delaunay triangulation algorithm and a surface mesh is initiated.Then,the mesh domain is defined and constructed by voxel structure.Periodic boundary conditions,inter-yarn,and yarnmatrix interfaces are eliminated by re-mesh and mesh optimization.An element splitting rule is established to split the voxel unit into sub-elements to create smooth interface.A 3D orthogonal weave fabric reinforced composite is generated and simulated under compressive load.The composite structure and damage morphology are in good agreement with those of the experiment.展开更多
The web of meso-scale meteorological observational station based on WebGIS realized by SVG technology was briefly introduced.Through grasping and applying SVG technology,the high-density automatic observational statio...The web of meso-scale meteorological observational station based on WebGIS realized by SVG technology was briefly introduced.Through grasping and applying SVG technology,the high-density automatic observational station in Anhui Province was developed.The web of meso-scale meteorological observational stations constructed by SVG technique can display the network graphics of weather data and intuitionistic vector graphics interface.展开更多
Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Wate...Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60 dbar, which is thicker than that of CEs. The NPSTMW thicker than 150 dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The 'trapped depth' of the composite CE (AE) is 300 m (550 m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies.展开更多
A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone ...A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.展开更多
This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to va...This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.展开更多
In reinforced concrete structures,corrosion of the rebar produces 2–6 times more corrosion product than the original material,creating pressure on the surrounding concrete,leading to cracking.The study of corrosion a...In reinforced concrete structures,corrosion of the rebar produces 2–6 times more corrosion product than the original material,creating pressure on the surrounding concrete,leading to cracking.The study of corrosion and cracking in reinforced concrete structures is therefore of great importance for enhancing the durability of concrete.Unlike many previous studies,we used ribbed rebar similar to that used commercially and considered the mechanical behavior of the interface transition zone(ITZ)between the aggregate and mortar to simulate the processes of corrosion and cracking of reinforced concrete structures.We explored the failure mode of the interface layer under uniform corrosion and the influence of different factors on the corrosion expansion cracking and the shedding mode of a concrete cover.This was achieved by establishing a three-phase meso-scale model of concrete based on secondary development of ABAQUS,simulating the mechanical behavior of the ITZ using a cohesive element,and establishing a rust expansion cracking model for single and multiple rebars.The results showed that:(1)Under uniform rust expansion,concrete cracks are distributed in a cross pattern with a slightly shorter lower limb.(2)When the corrosion rate is low,the ITZ is not damaged.With an increase in the corrosion rate,the proportion of elements with tensile damage in the ITZ first increases and then decreases.(3)In the case of a single rebar,the larger the cover thickness,the higher the corrosion rate corresponding to ITZ failure,and the arrangement of the rebar has little influence on the ITZ failure mode.(4)In the case of multiple rebars,the concrete cover cracks when the rebar spacing is small,and wedge-shaped spalling occurs when the spacing is large.展开更多
The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale proble...The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale problems in the oceans, not the global scale. Based on WOA98 climatological data, the meso-scale AGPE in the world oceans is estimated. Unlike previous results by Oort et al. , the meso-scale AGPE is large wherever there is a strong horizontal density gradient. The distribution of meso-scale AGPE reveals the close connection between the baroclinic instability and the release of gravitational potential energy stored within the scale of Rossby deformation radius.展开更多
By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on ...By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.展开更多
This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. Th...This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. The initial mesoscale vortices are generated stochastically by employing Reinaud's method. The 62 simulations are performed and analysed in order to understand the statistical characteristics of the effects. Results show that the deflection of the TC track at t = 24 h induced by the initial meso-scale vortices ranges from 2 km to 37 km with the mean value of 13.4 km. A more significant deflection of the TC track can be reduced when several initial meso-scale vortices simultaneously appear in a smaller TC circulation area. It ranges from 22 km to 37 km with the mean value of 28 km, this fact implies that the initial meso-scale vortices-induced deflection may not be neglected sometimes.展开更多
Methods of experimental observations, theoretical analysis and meso-scale modeling were used to study the propagation processes of shock waves in dry and wet sandstone under dynamic impact in this paper.According to t...Methods of experimental observations, theoretical analysis and meso-scale modeling were used to study the propagation processes of shock waves in dry and wet sandstone under dynamic impact in this paper.According to the results from the dynamic impact experiments with velocity of 0.2-0.5 km/s, it was found that the velocity of shock wave increases linearly with water content. Additionally, the velocity of the shock wave in the sandstone showed a linearly increased regularity with the increasement of the impact velocity, which was proved by theory in this paper. Furthermore, meso-scale simulation models were performed and the simulation results showed that sandstone's porosity reduced the shock waves velocity compared to nonporous materials. Pore space filled with water counteracts the effects of porosity, resulted in larger shock wave velocity.展开更多
Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation ...Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.展开更多
In this paper, an idealized perturbation following the "surge-flow conceptual model" for typical Meiyu frontal structure is designed to explain the β meso-scale structure ofrainbands in the Meiyu front using a non-...In this paper, an idealized perturbation following the "surge-flow conceptual model" for typical Meiyu frontal structure is designed to explain the β meso-scale structure ofrainbands in the Meiyu front using a non-hydrostatic, full-compressible storm-scale model including multi-phase microphysical parameterization. In addition, sensitivity numerical experiment on the vertical distribution of the ambient meridional wind is conducted to investigate the generation mechanism of D meso-scale double rainbands. The results of numerical experiments show that the cool and dry downdraft invading strengthened by the environmental aloft northerly wind plays a very important role to the generation and maintenance of the β meso-scale double rainbands. Moreover, the intensity and scale of the dry and cool downdraft invading are related to the intensity of the second circumfluence induced by mass adjustment when the acceleration of the westerly jet aloft occurs.展开更多
The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transpo...The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a meso-scale structure reconstruction technique to mimic the self-organization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and-physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.展开更多
Heavy rains occur in China frequently, which often bring us floods and serious disasters in the summer half-year. The meso-scale heavy rain parcels (MHRP) in the mid-latitude are usually developed in following cases:I...Heavy rains occur in China frequently, which often bring us floods and serious disasters in the summer half-year. The meso-scale heavy rain parcels (MHRP) in the mid-latitude are usually developed in following cases:I.By the approaching, meeting and / or overlapping of different weather systems, when two or more different rainfall systems are getting to conjugate, some MHRPs could be developed, such as: 1) a new cold/warm front or squall line approaches an old front or squall, even when the old one is somewhat decrepit; 2) at the places where two or more synoptic systems with different characteristics are meeting together, such as the meeting of tropical cyclone with the cold airs coming from the mid- and / or high-latitudes, or the low latitude vortex meeting with the westerly trough; 3) at the intersections of some different weather systems, such as the intersection of drylines, squall lines or fronts moving from different directions; and 4) by the overlapping of rainfall parcels produced continuously from a meso-generation centre.II.Resonance Effect and Tibetan Plateau Influence are two reasons why high frequency of heavy and torrential rains arround the meiyu front is discussed also.展开更多
Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under diff...Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 10^0-10^2μA, the electron density 10^15-10^16 m^-3 and further the power dissipation 〈 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10^-4-10^-3 Ω^-1. m^-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process.展开更多
This study demonstrates a homogenization approach via a modified state-based peridynamic(PD)method to predict the effective elastic properties of composite materials with periodic microstructure.The procedure of model...This study demonstrates a homogenization approach via a modified state-based peridynamic(PD)method to predict the effective elastic properties of composite materials with periodic microstructure.The procedure of modeling the PD unit cell(UC)of continuous fiber-reinforced composite is presented.Periodic boundary conditions are derived and implemented through the Lagrange multiplier method.A matrix-dominated approach for modeling the interphase properties between dissimilar materials is proposed.The periodicity and continuity assumptions are employed to determine the stress and strain fields,as well as the effective elastic properties.The PD-UCs of square and hexagonal packs as well as the 0/90 laminate microstructure are modeled and compared with the analytical,numerical and experimental results from the literature.Good agreement of predicted effective properties can be observed.Unlike other PD homogenization approaches,the effective material properties can be directly and individually obtained from simple loading conditions.展开更多
[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 ...[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.展开更多
By using wide scope ADCP data which were got during SCSMEX (South China Sea Monsoon Experiment) period in the summer of 1998, and comparing these data with numerical modelling result, the distribution and variation ch...By using wide scope ADCP data which were got during SCSMEX (South China Sea Monsoon Experiment) period in the summer of 1998, and comparing these data with numerical modelling result, the distribution and variation characteristics of the circulation and meso-scale eddies in the South China Sea (SCS) were studied. The results show that: (1) in the SCS, 18 different scale eddies or motion systems with characteristics similar to meso-scale eddy were found during the investigation; (2) a strong westward current was found in the south of the Taiwan Shoal; (3) the energy of those eddies west of 114°E was much stronger than that of the east;(4) and there exist many powerful meso-scale eddies in the Nansha region south of 12°N. The distributions of numerous eddies reflect the complexity of the circulation in the SCS. It seems that the formation of those eddies should be caused by joint work of wind, coast feature, bottom topography, water density, inertial force and continental shelf waves.展开更多
Gas-liquid-solid mini-fluidized beds known for high efficiency with controllable mass and heat transfer characteristics,have good application prospects in fields such as multiphase reaction process enhancement and int...Gas-liquid-solid mini-fluidized beds known for high efficiency with controllable mass and heat transfer characteristics,have good application prospects in fields such as multiphase reaction process enhancement and intrinsic kinetic detection.For three-phase mini-flow systems,the bed wall has a significant impact on spatiotemporal distribution of multi-phase flow structure,which influence the motion state of dispersed phase,make predicted phase holdup and residence time deviate from experimental values.However,current research on the quantitative impact of bed walls on flow structures is still limited,which hinders the optimization design and industrial application of such reactors.In this work,a meso-scale flow model of gas-liquid-solid mini-fluidized beds considering macro-scale effects between bed wall and flow is developed based on the principle of meso-scale science and introducing semi-theoretical formulas that take the effects of bed walls on particles and bubbles into account.The calculated values of this model are in good agreement with experimental data,where prediction of phase holdup fits well with experimental results,the deviation of bubble size and terminal velocity are within 10%.Compared to existing models,this model demonstrates a higher level of accuracy in predicting the flow patterns of mini-fluidized beds,particularly those with pronounced wall effect.This research has laid a foundation for the design,scale-up and industrial application of mini-fluidized bed reactors.展开更多
The meso-scale circulation at the intermediate depth east of Mindanao is studied using Argo profiling floats observations. The trajectories and the parking-depth velocities of Argo floats show that the intermediate-de...The meso-scale circulation at the intermediate depth east of Mindanao is studied using Argo profiling floats observations. The trajectories and the parking-depth velocities of Argo floats show that the intermediate-depth circulation east of Mindanao contains significant meso-scale features that are highly variable both in space and in time. Both cyclonic and anticyclonic eddies at the intermediate depth (1000–2000 m) are indicated by the trajectories east of Mindanao. The mean tangential velocities of these eddies are about 10 cm/s at 2000 m and over 20 cm/s at 1000 m, which indicates that the geostrophic calculation may contain large errors due to the vigorous eddy activity at the reference levels. The analyses also suggest that these eddies might play an important role in mass and vorticity balances of the intermediate-depth circulation east of Mindanao.展开更多
基金co-supported by the Chongqing Natural Science Foundation General Project,China(No.CSTB2022NSCQ-MSX1115)。
文摘A structured method to generate conformal finite element(FE)mesh for realistic 3D woven textile reinforced composite is proposed.It is based on a voxel structure mesh reconstruction framework and aims to provide accurate composite model at yarn level with material properties ready for use in commercial FE software.The textile representative volume element(RVE)is generated at filament level implementing the digital element method.Yarn structure is determined by filament bundle with variant cross-section shapes along its path.Yarn surface is then extracted using the Delaunay triangulation algorithm and a surface mesh is initiated.Then,the mesh domain is defined and constructed by voxel structure.Periodic boundary conditions,inter-yarn,and yarnmatrix interfaces are eliminated by re-mesh and mesh optimization.An element splitting rule is established to split the voxel unit into sub-elements to create smooth interface.A 3D orthogonal weave fabric reinforced composite is generated and simulated under compressive load.The composite structure and damage morphology are in good agreement with those of the experiment.
基金Supported by Anhui Meteorological Observatory Projects " Integration Design of Station Meteorological Observation Operation"
文摘The web of meso-scale meteorological observational station based on WebGIS realized by SVG technology was briefly introduced.Through grasping and applying SVG technology,the high-density automatic observational station in Anhui Province was developed.The web of meso-scale meteorological observational stations constructed by SVG technique can display the network graphics of weather data and intuitionistic vector graphics interface.
基金supported by the National Basic Research Program of China(Grant No.2012CB955602)the National Natural Science Foundation of China(Grant Nos.41076005 and 41176009)
文摘Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60 dbar, which is thicker than that of CEs. The NPSTMW thicker than 150 dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The 'trapped depth' of the composite CE (AE) is 300 m (550 m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies.
基金supported by the Key Project of the Chinese Ministry of Education (Grant No. 109046)the Center for Concrete Corea, Korea of the Yonsei University of Korea, the Grant-in-Aid for Scientific Research from the Japanese Government (A) (Grant No. 19206048)
文摘A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.
基金Supported by the National Natural Science Foundation of China (50806005,50736002,61072005)
文摘This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.
基金the National Natural Science Foundation of China(Nos.U1934213 and 51878572)。
文摘In reinforced concrete structures,corrosion of the rebar produces 2–6 times more corrosion product than the original material,creating pressure on the surrounding concrete,leading to cracking.The study of corrosion and cracking in reinforced concrete structures is therefore of great importance for enhancing the durability of concrete.Unlike many previous studies,we used ribbed rebar similar to that used commercially and considered the mechanical behavior of the interface transition zone(ITZ)between the aggregate and mortar to simulate the processes of corrosion and cracking of reinforced concrete structures.We explored the failure mode of the interface layer under uniform corrosion and the influence of different factors on the corrosion expansion cracking and the shedding mode of a concrete cover.This was achieved by establishing a three-phase meso-scale model of concrete based on secondary development of ABAQUS,simulating the mechanical behavior of the ITZ using a cohesive element,and establishing a rust expansion cracking model for single and multiple rebars.The results showed that:(1)Under uniform rust expansion,concrete cracks are distributed in a cross pattern with a slightly shorter lower limb.(2)When the corrosion rate is low,the ITZ is not damaged.With an increase in the corrosion rate,the proportion of elements with tensile damage in the ITZ first increases and then decreases.(3)In the case of a single rebar,the larger the cover thickness,the higher the corrosion rate corresponding to ITZ failure,and the arrangement of the rebar has little influence on the ITZ failure mode.(4)In the case of multiple rebars,the concrete cover cracks when the rebar spacing is small,and wedge-shaped spalling occurs when the spacing is large.
基金the National Naturale Science Foundation of China under contract No. 40476010 the Research Fund for the Doctoral Program of Higher Education of China under contract No. 20030423011
文摘The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale problems in the oceans, not the global scale. Based on WOA98 climatological data, the meso-scale AGPE in the world oceans is estimated. Unlike previous results by Oort et al. , the meso-scale AGPE is large wherever there is a strong horizontal density gradient. The distribution of meso-scale AGPE reveals the close connection between the baroclinic instability and the release of gravitational potential energy stored within the scale of Rossby deformation radius.
文摘By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40775038,40875031 and 40975036)the Science Foundation of Wuxi Environment Science and Technology Research Center
文摘This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. The initial mesoscale vortices are generated stochastically by employing Reinaud's method. The 62 simulations are performed and analysed in order to understand the statistical characteristics of the effects. Results show that the deflection of the TC track at t = 24 h induced by the initial meso-scale vortices ranges from 2 km to 37 km with the mean value of 13.4 km. A more significant deflection of the TC track can be reduced when several initial meso-scale vortices simultaneously appear in a smaller TC circulation area. It ranges from 22 km to 37 km with the mean value of 28 km, this fact implies that the initial meso-scale vortices-induced deflection may not be neglected sometimes.
基金Supported by NSAF (Grant No. U1730101)the National Program for Support of Top-notch Young Professionals of China (2014)+1 种基金the Funding of Science and Technology on Transient Impact Laboratory(Grant No. 61426060101162606001)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_0460)
文摘Methods of experimental observations, theoretical analysis and meso-scale modeling were used to study the propagation processes of shock waves in dry and wet sandstone under dynamic impact in this paper.According to the results from the dynamic impact experiments with velocity of 0.2-0.5 km/s, it was found that the velocity of shock wave increases linearly with water content. Additionally, the velocity of the shock wave in the sandstone showed a linearly increased regularity with the increasement of the impact velocity, which was proved by theory in this paper. Furthermore, meso-scale simulation models were performed and the simulation results showed that sandstone's porosity reduced the shock waves velocity compared to nonporous materials. Pore space filled with water counteracts the effects of porosity, resulted in larger shock wave velocity.
基金The National Basic Research Program(973 Program) of China under contract No.2014CB745004China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safety+2 种基金the National Natural Science Foundation of China under contract No.41206025NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404supported by China-Korea Joint Ocean Research Center
文摘Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.
基金State Key Basic Program (Project 973, 2004CB18301)Doctorate-Supervisor Foundation,MOE under Grant (20050284035)Project of Natural Science Foundation of Jiangsu Province (BK99020,BK2005081)
文摘In this paper, an idealized perturbation following the "surge-flow conceptual model" for typical Meiyu frontal structure is designed to explain the β meso-scale structure ofrainbands in the Meiyu front using a non-hydrostatic, full-compressible storm-scale model including multi-phase microphysical parameterization. In addition, sensitivity numerical experiment on the vertical distribution of the ambient meridional wind is conducted to investigate the generation mechanism of D meso-scale double rainbands. The results of numerical experiments show that the cool and dry downdraft invading strengthened by the environmental aloft northerly wind plays a very important role to the generation and maintenance of the β meso-scale double rainbands. Moreover, the intensity and scale of the dry and cool downdraft invading are related to the intensity of the second circumfluence induced by mass adjustment when the acceleration of the westerly jet aloft occurs.
文摘The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a meso-scale structure reconstruction technique to mimic the self-organization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and-physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.
文摘Heavy rains occur in China frequently, which often bring us floods and serious disasters in the summer half-year. The meso-scale heavy rain parcels (MHRP) in the mid-latitude are usually developed in following cases:I.By the approaching, meeting and / or overlapping of different weather systems, when two or more different rainfall systems are getting to conjugate, some MHRPs could be developed, such as: 1) a new cold/warm front or squall line approaches an old front or squall, even when the old one is somewhat decrepit; 2) at the places where two or more synoptic systems with different characteristics are meeting together, such as the meeting of tropical cyclone with the cold airs coming from the mid- and / or high-latitudes, or the low latitude vortex meeting with the westerly trough; 3) at the intersections of some different weather systems, such as the intersection of drylines, squall lines or fronts moving from different directions; and 4) by the overlapping of rainfall parcels produced continuously from a meso-generation centre.II.Resonance Effect and Tibetan Plateau Influence are two reasons why high frequency of heavy and torrential rains arround the meiyu front is discussed also.
基金supported by National Natural Science Foundation of China(No.51376021)the Fundamental Research Fund for Major Universities(No.2013JBM079)
文摘Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 10^0-10^2μA, the electron density 10^15-10^16 m^-3 and further the power dissipation 〈 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10^-4-10^-3 Ω^-1. m^-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process.
基金This work is supported by the National Natural Science Foundation of China under Grant Nos.1190219711972234 and is sponsored by Shanghai Sailing Program under Contract No.19YF1421700.
文摘This study demonstrates a homogenization approach via a modified state-based peridynamic(PD)method to predict the effective elastic properties of composite materials with periodic microstructure.The procedure of modeling the PD unit cell(UC)of continuous fiber-reinforced composite is presented.Periodic boundary conditions are derived and implemented through the Lagrange multiplier method.A matrix-dominated approach for modeling the interphase properties between dissimilar materials is proposed.The periodicity and continuity assumptions are employed to determine the stress and strain fields,as well as the effective elastic properties.The PD-UCs of square and hexagonal packs as well as the 0/90 laminate microstructure are modeled and compared with the analytical,numerical and experimental results from the literature.Good agreement of predicted effective properties can be observed.Unlike other PD homogenization approaches,the effective material properties can be directly and individually obtained from simple loading conditions.
文摘[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.
文摘By using wide scope ADCP data which were got during SCSMEX (South China Sea Monsoon Experiment) period in the summer of 1998, and comparing these data with numerical modelling result, the distribution and variation characteristics of the circulation and meso-scale eddies in the South China Sea (SCS) were studied. The results show that: (1) in the SCS, 18 different scale eddies or motion systems with characteristics similar to meso-scale eddy were found during the investigation; (2) a strong westward current was found in the south of the Taiwan Shoal; (3) the energy of those eddies west of 114°E was much stronger than that of the east;(4) and there exist many powerful meso-scale eddies in the Nansha region south of 12°N. The distributions of numerous eddies reflect the complexity of the circulation in the SCS. It seems that the formation of those eddies should be caused by joint work of wind, coast feature, bottom topography, water density, inertial force and continental shelf waves.
基金The authors are grateful to the National Natural Science Foundation of China(contract No.22178256)National Key Research and Development Program of China(contract No.2022YFF0705101)for financial support.
文摘Gas-liquid-solid mini-fluidized beds known for high efficiency with controllable mass and heat transfer characteristics,have good application prospects in fields such as multiphase reaction process enhancement and intrinsic kinetic detection.For three-phase mini-flow systems,the bed wall has a significant impact on spatiotemporal distribution of multi-phase flow structure,which influence the motion state of dispersed phase,make predicted phase holdup and residence time deviate from experimental values.However,current research on the quantitative impact of bed walls on flow structures is still limited,which hinders the optimization design and industrial application of such reactors.In this work,a meso-scale flow model of gas-liquid-solid mini-fluidized beds considering macro-scale effects between bed wall and flow is developed based on the principle of meso-scale science and introducing semi-theoretical formulas that take the effects of bed walls on particles and bubbles into account.The calculated values of this model are in good agreement with experimental data,where prediction of phase holdup fits well with experimental results,the deviation of bubble size and terminal velocity are within 10%.Compared to existing models,this model demonstrates a higher level of accuracy in predicting the flow patterns of mini-fluidized beds,particularly those with pronounced wall effect.This research has laid a foundation for the design,scale-up and industrial application of mini-fluidized bed reactors.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB816002 and 2006CB403600)National Natural Science Foundation of China (Grant No. 40806010)
文摘The meso-scale circulation at the intermediate depth east of Mindanao is studied using Argo profiling floats observations. The trajectories and the parking-depth velocities of Argo floats show that the intermediate-depth circulation east of Mindanao contains significant meso-scale features that are highly variable both in space and in time. Both cyclonic and anticyclonic eddies at the intermediate depth (1000–2000 m) are indicated by the trajectories east of Mindanao. The mean tangential velocities of these eddies are about 10 cm/s at 2000 m and over 20 cm/s at 1000 m, which indicates that the geostrophic calculation may contain large errors due to the vigorous eddy activity at the reference levels. The analyses also suggest that these eddies might play an important role in mass and vorticity balances of the intermediate-depth circulation east of Mindanao.