Extreme environmental conditions are key factors in the formation of the structure and diversity of microbial communities. In meromictic ecosystems, extreme conditions and a stable stratification of physical, chemical...Extreme environmental conditions are key factors in the formation of the structure and diversity of microbial communities. In meromictic ecosystems, extreme conditions and a stable stratification of physical, chemical and biological parameters lead to diversity and heterogeneity of microenvironments. Lake Doroninskoe is located in an extreme geographical area and diff ers from other known meromictic reservoirs of the world by a low level of illumination in the chemocline and a rare type of alkaline water in sedimentary rocks formed by evaporative concentration. To understand the key factors that shape the composition and structure of the microbial community, the macro-and micro-variations in space and time are of great importance. We investigated the short-term dynamics of the structure and diversity of microbial communities of the meromictic soda lake, Lake Doroninskoe, at day and night using highthroughput sequencing and bioinformatics. Metagenomic analysis of 16 S rRNA gene amplicons showed that the microbial communities had a high taxonomic diversity both at day and night. Sixteen bacterial and three archaeal phyla were identified. Proteobacteria were dominant and comprised 75% during the day, increasing to 90% at night. Metabolically stable denitrifying bacteria that were able to use a variety of alternative electron acceptors and electron donors were prevalent in Lake Doroninskoe. They belonged to the families Enterobacteriaceae(class Gammaproteobacteria) and Alcaligenaceae(class Betaproteobacteria). Statistically significant differences between day and night microbial communities were found. During the day, the microbial community was the most diverse. We discuss the peculiarities of the underexplored shortterm dynamics of the structure and diversity of the microbial communities of the meromictic soda Lake Doroninskoe, and propose topics for prospective studies.展开更多
Meromictic soda and saline lakes are unique ecosystems characterized by the stability of physical,chemical and biological parameters,and they are distributed all over the world.Lakes located in regions with average an...Meromictic soda and saline lakes are unique ecosystems characterized by the stability of physical,chemical and biological parameters,and they are distributed all over the world.Lakes located in regions with average annual negative air temperature are of particular interest because of the presence of two periods with intensive and dynamic processes:the so-called biological summer and the long ice season with the biological spring.Soda Lake Doroninskoe is located in Eastern Transbaikalia(51°14′N,112°14′E) in the permafrost zone in an extreme continental climate,and is covered by ice for seven months per year.The structure and diversity of the microbial communities throughout the water column of the lake was studied by 16 S r RNA gene amplicon metasequencing.Different species with specific functions were found to dominate at different depths.Metabolically flexible bacteria with a capacity to switch between anoxygenic photosynthesis and aerobic chemotrophic metabolism dominate in soda Lake Doroninskoe.展开更多
1 Introduction Many soda and salt lakes are characterized by the formation of the meromictic conditions under which a part of the water column is not involved in the annual process of mixing(Mac Intyre,Melack,1982).Th...1 Introduction Many soda and salt lakes are characterized by the formation of the meromictic conditions under which a part of the water column is not involved in the annual process of mixing(Mac Intyre,Melack,1982).This creates an展开更多
The long-term data(1996-2021)on the summer abundances of the dominant zooplankton species(copepod Arctodiaptomus salinus(Daday,1885),rotifers Brachionus plicatilis(Müller,1786)and Hexarthra sp.)in saline Lake Shi...The long-term data(1996-2021)on the summer abundances of the dominant zooplankton species(copepod Arctodiaptomus salinus(Daday,1885),rotifers Brachionus plicatilis(Müller,1786)and Hexarthra sp.)in saline Lake Shira were used to analyze the response of zooplankton to air temperature and a change in the circulation regime of the lake:breakdown and reestablishment of meromixis.All groups of zooplankton responded to prolonged summer elevated temperatures by increasing their abundance.During the breakdown of the stable stratification of Lake Shira(2015-2016),zooplankton abundance increased on average by a factor of two and amounted to 9×10^(5)inds./m^(2)in the water column for copepods.That increase coincided with similar responses of other components of the lake’s mixolimnion ecosystem,whose biomasses increased approximately two-fold during that period.After the reestablishment of the meromixis,the abundance of zooplankton decreased to previous values.Thus,the abundance of zooplankton is largely determined by weather(the effect of temperature)and ecological factors(mixing regime).展开更多
Predictive geochemical and limnologic modeling of pit lakes is an important aspect of modern mine-site permitting. One of the key assumptions of many predictive pit-lake models is that open-pit high walls and in-pit b...Predictive geochemical and limnologic modeling of pit lakes is an important aspect of modern mine-site permitting. One of the key assumptions of many predictive pit-lake models is that open-pit high walls and in-pit backfill become geochemically unreactive once submerged by the filling pit lake. Existing pit lakes provide useful data to test this assumption. The Sleeper pit lake (northwestern Nevada, USA) is approaching hydrologic equilibrium and contains good-quality water that generally meets regulatory requirements for pit lakes. Despite the overall stable geochemical composition, seasonal trends in the hypolimnion indicate the generation of dissolved metals associated with the ore deposit (e.g., Mn and Zn) and cyclical variations in pH. This study applies mass balance, analysis of subaqueous pyrite oxidation, and trends in solute concentrations to evaluate the potential causes of long-term solute generation in the hypolimnion of the Sleeper pit lake. Three separate conceptual models (subaqueous pyrite oxidation;redox reactions;and diffusion of solutes from a permanently stratified bottom layer) were tested against the high-quality dataset available for the pit lake. Evaluation of the monitoring dataset for the pit lake indicates that the Sleeper pit lake has variable limnologic behavior, wherein the lake is consistently stratified (meromictic) in some years, while it undergoes full mixing (holomixis) in other time periods. Comparison of the data with the three conceptual models illustrates that none of these models can be completely implicated as causing the seasonal geochemical variations in the bottom of the pit lake, but that a combination of the processes is likely partially responsible. Additional data collection including sediment cores and in-situ pore-water analysis would aid in understanding geochemical processes occurring over time.展开更多
基金conducted according to the project IX.137.1.1“Biodiversity of natural and natural-technogenic ecosystems of Transbaikalia(Cenrtal Asia)as indicators of regional climate changes”(АААА-А17-117011210078-9)
文摘Extreme environmental conditions are key factors in the formation of the structure and diversity of microbial communities. In meromictic ecosystems, extreme conditions and a stable stratification of physical, chemical and biological parameters lead to diversity and heterogeneity of microenvironments. Lake Doroninskoe is located in an extreme geographical area and diff ers from other known meromictic reservoirs of the world by a low level of illumination in the chemocline and a rare type of alkaline water in sedimentary rocks formed by evaporative concentration. To understand the key factors that shape the composition and structure of the microbial community, the macro-and micro-variations in space and time are of great importance. We investigated the short-term dynamics of the structure and diversity of microbial communities of the meromictic soda lake, Lake Doroninskoe, at day and night using highthroughput sequencing and bioinformatics. Metagenomic analysis of 16 S rRNA gene amplicons showed that the microbial communities had a high taxonomic diversity both at day and night. Sixteen bacterial and three archaeal phyla were identified. Proteobacteria were dominant and comprised 75% during the day, increasing to 90% at night. Metabolically stable denitrifying bacteria that were able to use a variety of alternative electron acceptors and electron donors were prevalent in Lake Doroninskoe. They belonged to the families Enterobacteriaceae(class Gammaproteobacteria) and Alcaligenaceae(class Betaproteobacteria). Statistically significant differences between day and night microbial communities were found. During the day, the microbial community was the most diverse. We discuss the peculiarities of the underexplored shortterm dynamics of the structure and diversity of the microbial communities of the meromictic soda Lake Doroninskoe, and propose topics for prospective studies.
文摘Meromictic soda and saline lakes are unique ecosystems characterized by the stability of physical,chemical and biological parameters,and they are distributed all over the world.Lakes located in regions with average annual negative air temperature are of particular interest because of the presence of two periods with intensive and dynamic processes:the so-called biological summer and the long ice season with the biological spring.Soda Lake Doroninskoe is located in Eastern Transbaikalia(51°14′N,112°14′E) in the permafrost zone in an extreme continental climate,and is covered by ice for seven months per year.The structure and diversity of the microbial communities throughout the water column of the lake was studied by 16 S r RNA gene amplicon metasequencing.Different species with specific functions were found to dominate at different depths.Metabolically flexible bacteria with a capacity to switch between anoxygenic photosynthesis and aerobic chemotrophic metabolism dominate in soda Lake Doroninskoe.
文摘1 Introduction Many soda and salt lakes are characterized by the formation of the meromictic conditions under which a part of the water column is not involved in the annual process of mixing(Mac Intyre,Melack,1982).This creates an
基金Supported by the RFBR and Krasnoyarsk Krai Government and the Krasnoyarsk Regional Fund of Science(No.19-44-240002)supported by the State Assignment of the Ministry of Science and Higher Education of the RF(No.0287-2021-0019).
文摘The long-term data(1996-2021)on the summer abundances of the dominant zooplankton species(copepod Arctodiaptomus salinus(Daday,1885),rotifers Brachionus plicatilis(Müller,1786)and Hexarthra sp.)in saline Lake Shira were used to analyze the response of zooplankton to air temperature and a change in the circulation regime of the lake:breakdown and reestablishment of meromixis.All groups of zooplankton responded to prolonged summer elevated temperatures by increasing their abundance.During the breakdown of the stable stratification of Lake Shira(2015-2016),zooplankton abundance increased on average by a factor of two and amounted to 9×10^(5)inds./m^(2)in the water column for copepods.That increase coincided with similar responses of other components of the lake’s mixolimnion ecosystem,whose biomasses increased approximately two-fold during that period.After the reestablishment of the meromixis,the abundance of zooplankton decreased to previous values.Thus,the abundance of zooplankton is largely determined by weather(the effect of temperature)and ecological factors(mixing regime).
文摘Predictive geochemical and limnologic modeling of pit lakes is an important aspect of modern mine-site permitting. One of the key assumptions of many predictive pit-lake models is that open-pit high walls and in-pit backfill become geochemically unreactive once submerged by the filling pit lake. Existing pit lakes provide useful data to test this assumption. The Sleeper pit lake (northwestern Nevada, USA) is approaching hydrologic equilibrium and contains good-quality water that generally meets regulatory requirements for pit lakes. Despite the overall stable geochemical composition, seasonal trends in the hypolimnion indicate the generation of dissolved metals associated with the ore deposit (e.g., Mn and Zn) and cyclical variations in pH. This study applies mass balance, analysis of subaqueous pyrite oxidation, and trends in solute concentrations to evaluate the potential causes of long-term solute generation in the hypolimnion of the Sleeper pit lake. Three separate conceptual models (subaqueous pyrite oxidation;redox reactions;and diffusion of solutes from a permanently stratified bottom layer) were tested against the high-quality dataset available for the pit lake. Evaluation of the monitoring dataset for the pit lake indicates that the Sleeper pit lake has variable limnologic behavior, wherein the lake is consistently stratified (meromictic) in some years, while it undergoes full mixing (holomixis) in other time periods. Comparison of the data with the three conceptual models illustrates that none of these models can be completely implicated as causing the seasonal geochemical variations in the bottom of the pit lake, but that a combination of the processes is likely partially responsible. Additional data collection including sediment cores and in-situ pore-water analysis would aid in understanding geochemical processes occurring over time.