As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orb...As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.展开更多
The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chi...The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chinese Bei Dou Navigation Satellite System(BDS).The long-term perturbation model for the relative motion is developed based on the Hamiltonian model,and the long-term evolution law is analyzed.The relationship between the control boundary of the constellation and the offset of the orbital elements is analyzed,and a general analytical method for calculating the offset of the orbit elements is proposed.The analytical model is further improved when the luni-solar perturbations are included.The long-term evolutions of the BDS MEO constellation within 10 years are illustrated,and the effectiveness of the proposed analytical perturbation compensation calculation approach is compared with the traditional numerical results.We found the fundamental reason for the nonlinear variations of the relative longitude of ascending node and the mean argument of latitude is the long-periodic variations of the orbital inclination due to the luni-solar perturbations.The proposed analytical approach can avoid the numerical iterations,and reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,there is no need for maintaining the BDS MEO constellation within 10 years while using the perturbation compensation method.展开更多
The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic d...The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic distribution characteristic of MEO-TDRSS, the coverage performance and inter-satellite link properties of four different constellation schemes are compared by simulations. Simulation results indicate that the rosette and common-track constellations, whose satellites are distributed on the celestial sphere more uniformly, are appropriate for the implementation of MEO-TDRSS of China.展开更多
基金National Natural Science Foundation of China(60532030)
文摘As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.
基金supported by the National Natural Science Foundation of China (No. 61403416)
文摘The current paper establishes the analytical models of the long-term evolution and perturbation compensation strategy for Medium Earth Orbits(MEO)shallow-resonant navigation constellation,with application to the Chinese Bei Dou Navigation Satellite System(BDS).The long-term perturbation model for the relative motion is developed based on the Hamiltonian model,and the long-term evolution law is analyzed.The relationship between the control boundary of the constellation and the offset of the orbital elements is analyzed,and a general analytical method for calculating the offset of the orbit elements is proposed.The analytical model is further improved when the luni-solar perturbations are included.The long-term evolutions of the BDS MEO constellation within 10 years are illustrated,and the effectiveness of the proposed analytical perturbation compensation calculation approach is compared with the traditional numerical results.We found the fundamental reason for the nonlinear variations of the relative longitude of ascending node and the mean argument of latitude is the long-periodic variations of the orbital inclination due to the luni-solar perturbations.The proposed analytical approach can avoid the numerical iterations,and reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,there is no need for maintaining the BDS MEO constellation within 10 years while using the perturbation compensation method.
基金the National Natural Science Foundation of China (60372013)
文摘The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic distribution characteristic of MEO-TDRSS, the coverage performance and inter-satellite link properties of four different constellation schemes are compared by simulations. Simulation results indicate that the rosette and common-track constellations, whose satellites are distributed on the celestial sphere more uniformly, are appropriate for the implementation of MEO-TDRSS of China.