Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu...Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.展开更多
Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melami...Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melamine sponge(MS)carbon composites were investigated through vacuum filtration followed by calcination.The FeZnC/CoZnC/CuZnC with carbon nanotubes(CNTs)were uniformly dispersed on the surface of melamine sponge carbon skeleton and Co-containing sample exhibits the highest CNTs concentration.The minimum reflection loss(RL_(min))of the CoZnC/MS composite(m_(composite):m_(paraffin)=1:1,m represents mass)reached-33.60 dB,and the effective absorption bandwidth(EAB)reached 9.60 GHz.The outstanding electromagnetic wave absorption(EMWA)properties of the CoZnC/MS composite can be attributed to its unique hollow structure,which leads to multiple reflections and scattering.The formed conductive network improves dielectric and conductive loss.The incorporation of Co enhances the magnetic loss capability and optimizes interfacial polarization and dipole polarization.By simultaneously improving dielectric and magnetic losses,ex-cellent impedance matching performance is achieved.The clarification of element replacement in XZnC/MS composites provides an effi-cient design perspective for high-performance non-stoichiometric carbide EMW absorbers.展开更多
The sodium-iodine(Na-I)battery exhibits significant potential as an alternative energy storage device to the lithium-ion battery.However,its development is hindered by inadequate electrical and thermal stability,as we...The sodium-iodine(Na-I)battery exhibits significant potential as an alternative energy storage device to the lithium-ion battery.However,its development is hindered by inadequate electrical and thermal stability,as well as the dissolution and shuttling of polyiodide.In this study,we report a preparation method for melamine carbon sponge(MC)via carbonizing a commercially available kitchen sponge.It was revealed that the as-prepared MC,composed of unique self-growing carbon nanotubes,could provide both physical and chemical adsorption capabilities for intermediate polyiodides to improve the electrochemical performance of NaI.Consequently,the NaI/MC electrode effectively minimized polyiodide dissolution and reduced the electrochemical impedance.The NaI/MC cathode demonstrated a high average discharge capacity of 92.75 mAh·g^(–1)over 200 cycles while maintaining a coulombic efficiency of 94%.The research findings from our study have promising applications in Na-I batteries.展开更多
Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl func...Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.展开更多
Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the...Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.展开更多
[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According...[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According to dynamics,mathematical modeling and optimization theory,linear and nonlinear models were respectively set up by taking an absorption peak of 1 550 cm-1 as characteristic absorption peak. [Result] The correlation coefficient of nonlinear model was 0.922 7 and the recovery was 96%,which showed that the nonlinear model was more accurate than linearity model with correlation coefficient of 0.904 9 and recovery of 557%. [Conclusion] It is feasible to determine melamine content by using the nonlinear model quantitatively.展开更多
Objective To develop an analytical method for simultaneously qualitative and quantitative determination of melamine and triazine-related by-products including ammelide, ammeline, and cyanuric acid in milk and milk pro...Objective To develop an analytical method for simultaneously qualitative and quantitative determination of melamine and triazine-related by-products including ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography- tandem mass spectrometry (GC-MS/MS). Methods Melamine and triazine-related by-products namely ammelide, ammeline and cyanuric acid in the samples were extracted in a solvent mixture of diethylamine, water, and acetonitrile (10:40:50, V/V/V). After centrifugation, an aliquot of the supernatant was evaporated to dryness under a gentle stream of nitrogen gas, and then melamine and triazine-related by-products were derivatized using BSTFA with 1% TMCS. The derivatives of melamine and its analogues were determined by gas chromatography/tandem mass spectrometry using multiple reactional monitoring (MRM) with 2, 6-Diamino-4-chloropyrimidine (DACP) being used as an internal standard. Results The linear detectable ranges were from 0.004 mg/kg to 1.6 mg/kg for melamine, ammelide, ammeline, and cyanuric acid with a correlation coefficient no less than 0.999. The recovery rates of the tour compounds in spiked blank milk powder at concentrations 0.5, 1, 2 mg/kg were between 61.4%-117.2%, and the relative standard deviation was no more than 11.5% (n=6). The detection limits of melamine, ammelide, ammeline and cyanuric acid in milk powder were 0.002 mg/kg with a ratio of signal to noise of 3. Conclusion This GC-MS/MS method for simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products is sensitive and specific.展开更多
The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot.Here,the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of mela...The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot.Here,the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam(MF)through electrostatic self-assembly and dip-coating adsorption process,realizing the integration of microwave absorption,infrared stealth,and flame retardant.Remarkably,the Ni/MXene-MF achieves a minimum reflection loss(RLmin)of−62.7 dB with a corresponding effective absorption bandwidth(EAB)of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm.Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks,which provided excellent impedance matching,dielectric loss,magnetic loss,interface polarization,and multiple attenuations.In addition,the Ni/MXene-MF endows low density,excellent heat insulation,infrared stealth,and flame-retardant functions.This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.展开更多
Objective To investigate the occurrence and concentrations of melamine and its analogues in tainted infant formula and to identify the etiologic factors for the urinary stones epidemic in infants and young children in...Objective To investigate the occurrence and concentrations of melamine and its analogues in tainted infant formula and to identify the etiologic factors for the urinary stones epidemic in infants and young children in China in 2008. Methods Sanlu infant formula samples were collected from families of the affected children in Gansu province, and markets in Gansu and Hebei provinces and Beijing city. Melamine and its analogues, including cyanuric acid, ammeline, and ammelide were measured by gas chromatography/tandem mass spectrometry. Results High prevalence and concentrations of melamine were found in Sanlu infant formula samples, with low concentrations of cyanuric acid, ammeline and ammelide. Melamine were detected in 87 out of 111 Sanlu infant formula samples with a range of 118 to 4 700 mg/kg, Conclusion The results provide strong evidence for melamine as the etiological factor for the urinary stones epidemic in infants and young children in China in 2008.展开更多
The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the ami...The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the amino groups and change the hydrogen bonding pat- tern between the melamine molecules. Accordingly, the self-assembly structure has changed stepwise from a well-defined honeycomb into a track-like and then a triangular structure depending on the amount of Cu adatoms. The interaction between Cu adatom and melamine is moderate thus the Cu adatoms can be released upon mild heating to around 100 ℃. These findings are different from previous observations of either the coordination assembly or the physically trapped metal adatoms.展开更多
An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesiz...An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.展开更多
Objectives To study the migration of melamine into foods from plastic food packaging materials and dairy product containers commonly used in China. Methods 37 samples were collected from the market. The EU migration t...Objectives To study the migration of melamine into foods from plastic food packaging materials and dairy product containers commonly used in China. Methods 37 samples were collected from the market. The EU migration testing conditions were adopted with distilled water, 3% acetic acid, n-hexane and 15% ethanol being chosen as the simulating solutions. The HPLC method was used to detect melamine. Results No melamine was detected in 15 dairy product containers. Among the 22 plastic samples, 16 of polypropylene, and polycarbonate types had no detectable amount melamine while a low level of melamine was found in 3 of the 6 melamine resin containers. Conclusion Migration of melamine from food packaging materials in China market is in line with the requirements of EU.展开更多
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carb...Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM) and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 mW/m(2) (700 degrees C) and 461.5 mW/m(2) (1200 degrees C) and further increase to 472.5 mW/m(2) (700 degrees C) and 515.4 mW/m(2) (1200 degrees C) with the co-carbonization modification of melamine. The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs's anode materials. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much mor...This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much more effectively than that of microcapsule with polyurea shell material(HPM).The results of microscopical imaging analysis system,DSC,TG,and laser particle analyzer were briefly introduced.展开更多
The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leaka...The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects.展开更多
Magnetic polyphosphazene(MPZS) particles coated by Ag nanoparticles(MPZS-Ag) have been developed as surface enhanced Raman spectroscopy(SERS) substrates for sensitive detection of melamine in aqueous solutions and mil...Magnetic polyphosphazene(MPZS) particles coated by Ag nanoparticles(MPZS-Ag) have been developed as surface enhanced Raman spectroscopy(SERS) substrates for sensitive detection of melamine in aqueous solutions and milk samples.5,5’-Dithiobis-(2-nitrobenzoic acid)(DTNB) was used as model analyte to test the SERS activity of the MPZS-Ag particles.The prepared MPZS-Ag particles possess both magnetic responsiveness and excellent SERS properties.SERS detection of different concentrations of melamine aqueous solutions and spiked milk samples were performed by the MPZS-Ag particles.The limit of detection(LOD) of the melamine in aqueous solutions was 10^-7 mol/L(0.0126 mg/L) and 0.6 mg/L in real milk samples using the MPZS-Ag particles as SERS substrates.The LOD of the melamine are much lower than the safety values of Food and Drug Administration and Codex Alimentarius Commission.These results indicate that the MPZS-Ag particles have promising application prospect for SERS analysis in food safety fields.展开更多
A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based...A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based fragrance was pre-encapsulated by an inner polyacrylate membrane via solvent evaporation,followed by in situ polymerization of MF precondensates as an outer shell.The polyacrylate membrane is used as an intermediate bridging layer to stabilize the oil-based fragrance,and to provide driving forces for in situ polymerization of MF precondensates through electrostatic attractions between carboxyl groups and ammonium ions.It was demonstrated that MF microcapsules containing clove oil were prepared successfully.The amount and the composition of the intermediate polyacrylate bridging layer were critical.Smooth and sphere-shaped MF-clove oil microcapsules were prepared when the weight ratio of polyacrylate to clove oil was over 60 wt%and the concentration of acrylic acid(AA)increased to 10 wt%in polyacrylate.In addition,MF microcapsules containing sunflower oil and hexyl salicylate were prepared by using this method.The work suggests that this new approach can be potentially used to encapsulate various core materials,tuning the shell properties of microcapsules such as thickness,mechanical strength and release properties.展开更多
With the increasing energy demand together with the deteriorating environment and decreasing fossil fuel resources,the development of highly efficient energy conversion and storage devices is one of the key challenges...With the increasing energy demand together with the deteriorating environment and decreasing fossil fuel resources,the development of highly efficient energy conversion and storage devices is one of the key challenges of both fundamental and applied research in energy technology.Melamine sponges(MS)with low density,high nitrogen content,and high porosity have been used to design and obtain three‐dimensional porous carbon electrode materials.More importantly,they are inexpensive,environment‐friendly,and easy to synthesize.There have been many reports on the modification of carbonized MS and MS‐based composites for supercapacitor and lithium battery electrode materials.In this paper,recent studies on the fabrication of electrode materials using MS as raw materials have been mainly reviewed,including carbonation,doping activation,and composite modification of MS,and expectations for the development of porous carbon materials for energy storage as a reference with excellent performance,environment‐friendliness,and long life.展开更多
Melamine trisulfonic acid(MTSA) can be used as an efficient and recyclable catalyst for the promotion of the synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thiones(DHPMs) in the absence of solvent.All reactions w...Melamine trisulfonic acid(MTSA) can be used as an efficient and recyclable catalyst for the promotion of the synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thiones(DHPMs) in the absence of solvent.All reactions were performed at 80℃in good to high yields.展开更多
A facile approach to the preparation of a novel magnetically separable H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4) nanocomposite by chemical impregnation is demonstrated.The prepared nanocomposi...A facile approach to the preparation of a novel magnetically separable H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4) nanocomposite by chemical impregnation is demonstrated.The prepared nanocomposite was characterized and its acidity was measured by potentiometric titration.PMoV/Fe_3O_4/g-C_3N_4 showed high catalytic activity in the selective oxidative desulfurization of sulfides to their corresponding sulfoxides or sulfones.The catalytic oxidation of a dibenzothiophene(DBT)-containing model oil and that of real oil were also studied under optimized conditions.In addition,the effects of various nitrogen compounds,as well as the use of one- and two-ring aromatic hydrocarbons as co-solvents,on the catalytic removal of sulfur from DBT were investigated.The catalyst was easily separated and could be recovered from the reaction mixture by using an external magnetic field.Additionally,the remaining reactants could be separated from the products by simple decantation if an appropriate solvent was chosen for the extraction.The advantages of this nanocatalyst are its high catalytic activity and reusability;it can be used at least four times without considerable loss of activity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52372093 and 52102145)the Key R&D Program of Shaanxi Province(Nos.2023GXLH-045 and 2022SF-168)+4 种基金the Xi’an Programs for Science and Technology Plan(Nos.2020KJRC0090 and 21XJZZ0045)the Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202001)the Xi’an Municipal Bureau of Science and Technology(No.21XJZZ0054)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,Shaanxi University of Science and Technology(No.KFKT2021-01)the Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(No.KFKT2021-01).
文摘Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.
基金supported by the National Natural Science Foundation of China(Nos.52101274,52377026 and 52472131)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)+4 种基金Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011 and ZR2022ME089)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240)College Student Innovation and Entrepreneurship Training Program Project,China(No.202311066088).
文摘Non-stoichiometric carbides have been proven to be effective electromagnetic wave(EMW)absorbing materials.In this study,phase and morphology of XZnC(X=Fe/Co/Cu)loaded on a three dimensional(3D)network structure melamine sponge(MS)carbon composites were investigated through vacuum filtration followed by calcination.The FeZnC/CoZnC/CuZnC with carbon nanotubes(CNTs)were uniformly dispersed on the surface of melamine sponge carbon skeleton and Co-containing sample exhibits the highest CNTs concentration.The minimum reflection loss(RL_(min))of the CoZnC/MS composite(m_(composite):m_(paraffin)=1:1,m represents mass)reached-33.60 dB,and the effective absorption bandwidth(EAB)reached 9.60 GHz.The outstanding electromagnetic wave absorption(EMWA)properties of the CoZnC/MS composite can be attributed to its unique hollow structure,which leads to multiple reflections and scattering.The formed conductive network improves dielectric and conductive loss.The incorporation of Co enhances the magnetic loss capability and optimizes interfacial polarization and dipole polarization.By simultaneously improving dielectric and magnetic losses,ex-cellent impedance matching performance is achieved.The clarification of element replacement in XZnC/MS composites provides an effi-cient design perspective for high-performance non-stoichiometric carbide EMW absorbers.
基金supported by Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application(Grant No.ZDSYS20220527171407017).
文摘The sodium-iodine(Na-I)battery exhibits significant potential as an alternative energy storage device to the lithium-ion battery.However,its development is hindered by inadequate electrical and thermal stability,as well as the dissolution and shuttling of polyiodide.In this study,we report a preparation method for melamine carbon sponge(MC)via carbonizing a commercially available kitchen sponge.It was revealed that the as-prepared MC,composed of unique self-growing carbon nanotubes,could provide both physical and chemical adsorption capabilities for intermediate polyiodides to improve the electrochemical performance of NaI.Consequently,the NaI/MC electrode effectively minimized polyiodide dissolution and reduced the electrochemical impedance.The NaI/MC cathode demonstrated a high average discharge capacity of 92.75 mAh·g^(–1)over 200 cycles while maintaining a coulombic efficiency of 94%.The research findings from our study have promising applications in Na-I batteries.
基金Project(2025JJ70532)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(21862009,21563016)supported by the National Natural Science Foundation of ChinaProject(2022GX020)supported by the Taian Science and Technology Innovation Development Project,China。
文摘Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.
基金Project(2023RC3066)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023JJ50079)supported by the Hunan Provincial Natural Science Foundation,China。
文摘Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.
基金Supported by Promoting Projects of the Industrialization of University Research of Jiangsu Province (JHZD09-35)Natural Science Research Project of Universities in Jiangsu Province (09KJD210001)Research Foundation of Huaiyin Institute of Technology(HGA0908)~~
文摘[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According to dynamics,mathematical modeling and optimization theory,linear and nonlinear models were respectively set up by taking an absorption peak of 1 550 cm-1 as characteristic absorption peak. [Result] The correlation coefficient of nonlinear model was 0.922 7 and the recovery was 96%,which showed that the nonlinear model was more accurate than linearity model with correlation coefficient of 0.904 9 and recovery of 557%. [Conclusion] It is feasible to determine melamine content by using the nonlinear model quantitatively.
文摘Objective To develop an analytical method for simultaneously qualitative and quantitative determination of melamine and triazine-related by-products including ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography- tandem mass spectrometry (GC-MS/MS). Methods Melamine and triazine-related by-products namely ammelide, ammeline and cyanuric acid in the samples were extracted in a solvent mixture of diethylamine, water, and acetonitrile (10:40:50, V/V/V). After centrifugation, an aliquot of the supernatant was evaporated to dryness under a gentle stream of nitrogen gas, and then melamine and triazine-related by-products were derivatized using BSTFA with 1% TMCS. The derivatives of melamine and its analogues were determined by gas chromatography/tandem mass spectrometry using multiple reactional monitoring (MRM) with 2, 6-Diamino-4-chloropyrimidine (DACP) being used as an internal standard. Results The linear detectable ranges were from 0.004 mg/kg to 1.6 mg/kg for melamine, ammelide, ammeline, and cyanuric acid with a correlation coefficient no less than 0.999. The recovery rates of the tour compounds in spiked blank milk powder at concentrations 0.5, 1, 2 mg/kg were between 61.4%-117.2%, and the relative standard deviation was no more than 11.5% (n=6). The detection limits of melamine, ammelide, ammeline and cyanuric acid in milk powder were 0.002 mg/kg with a ratio of signal to noise of 3. Conclusion This GC-MS/MS method for simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products is sensitive and specific.
基金The authors thank National Natural Science Foundation of China(51803190)National Key R&D Program of China(2019YFA0706802)financial support.
文摘The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot.Here,the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam(MF)through electrostatic self-assembly and dip-coating adsorption process,realizing the integration of microwave absorption,infrared stealth,and flame retardant.Remarkably,the Ni/MXene-MF achieves a minimum reflection loss(RLmin)of−62.7 dB with a corresponding effective absorption bandwidth(EAB)of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm.Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks,which provided excellent impedance matching,dielectric loss,magnetic loss,interface polarization,and multiple attenuations.In addition,the Ni/MXene-MF endows low density,excellent heat insulation,infrared stealth,and flame-retardant functions.This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.
文摘Objective To investigate the occurrence and concentrations of melamine and its analogues in tainted infant formula and to identify the etiologic factors for the urinary stones epidemic in infants and young children in China in 2008. Methods Sanlu infant formula samples were collected from families of the affected children in Gansu province, and markets in Gansu and Hebei provinces and Beijing city. Melamine and its analogues, including cyanuric acid, ammeline, and ammelide were measured by gas chromatography/tandem mass spectrometry. Results High prevalence and concentrations of melamine were found in Sanlu infant formula samples, with low concentrations of cyanuric acid, ammeline and ammelide. Melamine were detected in 87 out of 111 Sanlu infant formula samples with a range of 118 to 4 700 mg/kg, Conclusion The results provide strong evidence for melamine as the etiological factor for the urinary stones epidemic in infants and young children in China in 2008.
基金This work was supported by the National Natural Science Foundation of China (No.91545128, No.21333001, No.91227117) and Ministry of Science and Technology of China (No.2011CB808702), the Fundamental Research Funds for the Central Universities and the Thousand Talent Program for Young Outstanding Scientists of the Chinese Government, and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDB01020100).
文摘The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the amino groups and change the hydrogen bonding pat- tern between the melamine molecules. Accordingly, the self-assembly structure has changed stepwise from a well-defined honeycomb into a track-like and then a triangular structure depending on the amount of Cu adatoms. The interaction between Cu adatom and melamine is moderate thus the Cu adatoms can be released upon mild heating to around 100 ℃. These findings are different from previous observations of either the coordination assembly or the physically trapped metal adatoms.
文摘An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.
文摘Objectives To study the migration of melamine into foods from plastic food packaging materials and dairy product containers commonly used in China. Methods 37 samples were collected from the market. The EU migration testing conditions were adopted with distilled water, 3% acetic acid, n-hexane and 15% ethanol being chosen as the simulating solutions. The HPLC method was used to detect melamine. Results No melamine was detected in 15 dairy product containers. Among the 22 plastic samples, 16 of polypropylene, and polycarbonate types had no detectable amount melamine while a low level of melamine was found in 3 of the 6 melamine resin containers. Conclusion Migration of melamine from food packaging materials in China market is in line with the requirements of EU.
文摘Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM) and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 mW/m(2) (700 degrees C) and 461.5 mW/m(2) (1200 degrees C) and further increase to 472.5 mW/m(2) (700 degrees C) and 515.4 mW/m(2) (1200 degrees C) with the co-carbonization modification of melamine. The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs's anode materials. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the financial support from the National Basic Research Program of China(No. 2009CB623200)the National Natural Science Foundation of China(No.50539040)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ 0725).
文摘This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much more effectively than that of microcapsule with polyurea shell material(HPM).The results of microscopical imaging analysis system,DSC,TG,and laser particle analyzer were briefly introduced.
基金National Natural Science Foundation of China,Grant/Award Numbers:51861005,52071092,U20A20237Guangxi Natural Science Foundation,Grant/Award Numbers:2019GXNSFDA245023,2019GXNSFGA245005,2020GXNSFGA297004,2021GXNSFFA196002Guangxi Bagui Scholar Foundation。
文摘The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects.
基金the financial support of the National Natural Science Foundation of China(Nos.51503040,31771893)the Natural Science Foundation of Fujian Province,China(No. 2018J01766)the Outstanding Youth Research Talent Cultivation Program of Universities in Fujian Province,China (No.601936)
文摘Magnetic polyphosphazene(MPZS) particles coated by Ag nanoparticles(MPZS-Ag) have been developed as surface enhanced Raman spectroscopy(SERS) substrates for sensitive detection of melamine in aqueous solutions and milk samples.5,5’-Dithiobis-(2-nitrobenzoic acid)(DTNB) was used as model analyte to test the SERS activity of the MPZS-Ag particles.The prepared MPZS-Ag particles possess both magnetic responsiveness and excellent SERS properties.SERS detection of different concentrations of melamine aqueous solutions and spiked milk samples were performed by the MPZS-Ag particles.The limit of detection(LOD) of the melamine in aqueous solutions was 10^-7 mol/L(0.0126 mg/L) and 0.6 mg/L in real milk samples using the MPZS-Ag particles as SERS substrates.The LOD of the melamine are much lower than the safety values of Food and Drug Administration and Codex Alimentarius Commission.These results indicate that the MPZS-Ag particles have promising application prospect for SERS analysis in food safety fields.
基金Supported by the National Natural Science Foundation of China(21466016,21577053)the Natural Science Foundation of Yunnan Province(2016FB024).
文摘A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based fragrance was pre-encapsulated by an inner polyacrylate membrane via solvent evaporation,followed by in situ polymerization of MF precondensates as an outer shell.The polyacrylate membrane is used as an intermediate bridging layer to stabilize the oil-based fragrance,and to provide driving forces for in situ polymerization of MF precondensates through electrostatic attractions between carboxyl groups and ammonium ions.It was demonstrated that MF microcapsules containing clove oil were prepared successfully.The amount and the composition of the intermediate polyacrylate bridging layer were critical.Smooth and sphere-shaped MF-clove oil microcapsules were prepared when the weight ratio of polyacrylate to clove oil was over 60 wt%and the concentration of acrylic acid(AA)increased to 10 wt%in polyacrylate.In addition,MF microcapsules containing sunflower oil and hexyl salicylate were prepared by using this method.The work suggests that this new approach can be potentially used to encapsulate various core materials,tuning the shell properties of microcapsules such as thickness,mechanical strength and release properties.
基金The authors appreciate the support from the Natural Science Foundation of Shandong Province(ZR2019MB019,ZR2018MEM020)We also acknowledge financial support from the Key Research and Development Program of Shandong Province(2019GSF111047).
文摘With the increasing energy demand together with the deteriorating environment and decreasing fossil fuel resources,the development of highly efficient energy conversion and storage devices is one of the key challenges of both fundamental and applied research in energy technology.Melamine sponges(MS)with low density,high nitrogen content,and high porosity have been used to design and obtain three‐dimensional porous carbon electrode materials.More importantly,they are inexpensive,environment‐friendly,and easy to synthesize.There have been many reports on the modification of carbonized MS and MS‐based composites for supercapacitor and lithium battery electrode materials.In this paper,recent studies on the fabrication of electrode materials using MS as raw materials have been mainly reviewed,including carbonation,doping activation,and composite modification of MS,and expectations for the development of porous carbon materials for energy storage as a reference with excellent performance,environment‐friendliness,and long life.
基金the University of Guilan Research Council for the partial support of this work
文摘Melamine trisulfonic acid(MTSA) can be used as an efficient and recyclable catalyst for the promotion of the synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thiones(DHPMs) in the absence of solvent.All reactions were performed at 80℃in good to high yields.
基金the Razi University Research Council for support of this work
文摘A facile approach to the preparation of a novel magnetically separable H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4) nanocomposite by chemical impregnation is demonstrated.The prepared nanocomposite was characterized and its acidity was measured by potentiometric titration.PMoV/Fe_3O_4/g-C_3N_4 showed high catalytic activity in the selective oxidative desulfurization of sulfides to their corresponding sulfoxides or sulfones.The catalytic oxidation of a dibenzothiophene(DBT)-containing model oil and that of real oil were also studied under optimized conditions.In addition,the effects of various nitrogen compounds,as well as the use of one- and two-ring aromatic hydrocarbons as co-solvents,on the catalytic removal of sulfur from DBT were investigated.The catalyst was easily separated and could be recovered from the reaction mixture by using an external magnetic field.Additionally,the remaining reactants could be separated from the products by simple decantation if an appropriate solvent was chosen for the extraction.The advantages of this nanocatalyst are its high catalytic activity and reusability;it can be used at least four times without considerable loss of activity.