In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting device...In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.展开更多
In this paper,by defining a general potential energy for the multiphase coupled multiferroics and applying the minimum energy principle,the coupled governing equations are derived.This system of equations is then disc...In this paper,by defining a general potential energy for the multiphase coupled multiferroics and applying the minimum energy principle,the coupled governing equations are derived.This system of equations is then discretized as a general three-dimensional(3D)finite element(FE)model based on the COMSOL software.After validating the formulation,it is then applied to the analysis and design of the common sandwich structure of multiferroics composites.Under the typical static loading,the effects of general lateral boundary conditions,material grading,nonlinearity,as well as polarization orientation on the composites are analyzed.For the magneto-electro-elastic(MEE)sandwich made of piezoelectric BaTiO_(3)and magnetostrictive CoFe_(2)O_(4)with different stacking sequences,various interesting features are observed which should be very helpful for the design of high-performance multiphase composites.展开更多
基金Project supported by the Science and Technology Plan Joint Program of Liaoning Province of China(Natural Science Foundation-Doctoral Research Launch Project)(No.2024-BSLH-027)the Fundamental Research Funds for Undergraduate Universities of Liaoning Province of China(No.LJBKY2024033)+1 种基金the National Natural Science Foundation of China(No.12472064)the Natural Science Foundation of Liaoning Province of China(No.2023-MS-118)。
文摘In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.
基金the National Natural Science Foundation of China(Nos.12172303 and 12111530222)the Shaanxi Key Research and Development Program for International Cooperation and Exchanges(No.2022KWZ-23)+2 种基金the Fundamental Research Funds for the Central Universities(No.5000220118)the Center for Foreign Talent Introduction and Academic Exchange Project(No.BP0719007)the Yushan Fellowship,the Science and Technology Council of Taiwan of China(No.NSTC 111-2811-E-A49-534)。
文摘In this paper,by defining a general potential energy for the multiphase coupled multiferroics and applying the minimum energy principle,the coupled governing equations are derived.This system of equations is then discretized as a general three-dimensional(3D)finite element(FE)model based on the COMSOL software.After validating the formulation,it is then applied to the analysis and design of the common sandwich structure of multiferroics composites.Under the typical static loading,the effects of general lateral boundary conditions,material grading,nonlinearity,as well as polarization orientation on the composites are analyzed.For the magneto-electro-elastic(MEE)sandwich made of piezoelectric BaTiO_(3)and magnetostrictive CoFe_(2)O_(4)with different stacking sequences,various interesting features are observed which should be very helpful for the design of high-performance multiphase composites.