Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment o...Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte–derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42–induced Alzheimer's disease–like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease–like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42–induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.展开更多
Rechargeable lithium-carbon dioxide(Li-CO_(2))batteries have emerged as a highly promising approach to simultaneously address energy shortages and the greenhouse effect.However,certain limitations exist in Li-CO_(2)ba...Rechargeable lithium-carbon dioxide(Li-CO_(2))batteries have emerged as a highly promising approach to simultaneously address energy shortages and the greenhouse effect.However,certain limitations exist in Li-CO_(2)batteries like high charge overpotential and unstable Li metal interface,which adversely affect the energy efficiency and cycling life.The incorporation of soluble redox mediators(RMs)has proven effective in enhancing the charge transfer between lithium carbonate(Li_(2)CO_(3))and cathode,thereby substantially reducing the charge overpotential.Nevertheless,the severe shuttle effect of RMs results in the reactions with Li anode,not only exacerbating the corrosion of Li anode but also leading to the depletion of RMs and electrical energy efficiency.In this work,an organic compound containing large cation group,1-ethyl-3-methylimidazole bromide(EMIBr)is proposed as the defense donor RM for Li anode in Li-CO_(2)batteries to address the above problems simultaneously.During charging,Li_(2)CO_(3)oxidation kinetics can be accelerated by bromide anion pair(Br_(3)^(−)/Br^(−)).Meanwhile,the cations(EMI^(+))are preferentially adsorbed around the protruding tips of Li anode through electrostatic interaction driven by surface free energy,forming protective layers that effectively inhibit further Li deposition at these tips,which is verified by DFT calculations.Additionally,Li dendrites growth is inhibited by the electrostatic repulsion of polar groups in EMIBr,resulting in uniform Li deposition.Consequently,a lower overpotential(∼1.17 V)and a longer cycle life(∼200 cycles)have been obtained for Li-CO_(2)battery incorporating EMIBr.展开更多
Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim...Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim to control the spread of neuroinflammation during the acute phase but later hinder axon regeneration in later stages.Recent studies have enhanced our understanding of immunomodulation,revealing that injury-associated inflammation involves various cell types and molecules with positive and negative effects.This review employs bibliometric analysis to examine the literature on inflammatory mediators in spinal cord injury,highlighting recent research and providing a comprehensive overview of the current state of research and the latest advances in studies on neuroinflammation related to spinal cord injury.We summarize the immune and inflammatory responses at different stages of spinal cord injury,offering crucial insights for future research.Additionally,we review repair strategies based on inflammatory mediators for the injured spinal cord.Finally,this review discusses the current status and future directions of translational research focused on immune-targeting strategies,including pharmaceuticals,biomedical engineering,and gene therapy.The development of a combined,precise,and multitemporal strategy for the repair of injured spinal cords represents a promising direction for future research.展开更多
Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water spl...Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm^(-2) at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion.展开更多
All-solid-state Li-S batteries(ASSLSBs)are more attractive owing to their achievable superior energy density at a reasonable cost and the solid electrolyte(SE)utilization mitigating the widely recognized polysulfide s...All-solid-state Li-S batteries(ASSLSBs)are more attractive owing to their achievable superior energy density at a reasonable cost and the solid electrolyte(SE)utilization mitigating the widely recognized polysulfide shuttle problem.While the volume expansion(~80%)that occurs during the initial transformation of sulfur to lithium sulfide induces mechanical stress,this can be avoided by using Li_(2)S as a cathode,which also permits the anode-free cell design.However,the high oxidation energy barrier of Li_(2)S cathode during the charging step limits its application in commercial devices.Redox mediators have been extensively used to reduce the oxidation energy barrier of Li_(2)S to the sulfur conversation and boost the reversible kinetics of the conversion reaction.In this review,we have summarized the available redox mediators for Li_(2)S cathode in ASSLSBs and its working mechanism.Moreover,we have proposed novel strategies and guidelines for designing effective redox mediators to boost the reversible conversion reaction.展开更多
This letter critically examines a recent study by Zhang et al investigating the mediating role of overweight in the association between depression and new-onset diabetes among middle-aged and older adults.The study pr...This letter critically examines a recent study by Zhang et al investigating the mediating role of overweight in the association between depression and new-onset diabetes among middle-aged and older adults.The study provides com-pelling evidence that overweight mediates approximately 61%of this relationship,suggesting that depression may contribute to diabetes by influencing behaviors that lead to weight gain.This aligns with the understanding that depression can impact appetite regulation and physical activity.While the study employs a longitudinal design and robust statistical methods,limitations such as reliance on self-reported data and body mass index measurements warrant consideration.This analysis emphasizes the need for integrated interventions that address both mental and metabolic health for effective diabetes prevention.Future research should further explore the interplay of lifestyle factors,biological pathways,and social determinants in the development of this complex relationship.Ultimately,an integrated approach targeting both behavioral and biological components is crucial for the prevention and management of new-onset diabetes.展开更多
Non-aqueous absorbents(NAAs)have attracted increasing attention for CO_(2)capture because of their great energy-saving potential.Primary diamines which can provide high CO_(2)absorption loading are promising candidate...Non-aqueous absorbents(NAAs)have attracted increasing attention for CO_(2)capture because of their great energy-saving potential.Primary diamines which can provide high CO_(2)absorption loading are promising candidates for formulating NAAs but suffer disadvantages in regenerability.In this study,a promising strategy that using tertiary amines(TAs)as proton-transfer mediators was proposed to enhance the regenerability of an aminoethylethanolamine(AEEA,diamine)/dimethyl sulfoxide(DMSO)(A/D)NAA.Surprisingly,some employed TAs such as N,N-diethylaminoethanol(DEEA),N,N,N’,N’’,N’’-pentamethyldiethylenetriamine(PMDETA),3-dimethylamino-1-propanol(3DMA1P),and N,N-dimethylethanolamine(DMEA)enhanced not only the regenerability of the A/D NAA but also the CO_(2)absorption performance.Specifically,the CO_(2)absorption loading and cyclic loading were increased by about 12.7%and 15.5%-22.7%,respectively.The TA-enhanced CO_(2)capture mechanism was comprehensively explored via nuclear magnetic resonance technique and quantum chemical calculations.During CO_(2)absorption,the TA acted as an ultimate proton acceptor for AEEA-zwitterion and enabled more AEEA to form carbamate species(AEEACOO-)to store CO_(2),thus enhancing CO_(2)absorption.For CO_(2)desorption,the TA first provided protons directly to AEEACOO-as a proton donor;moreover,it functioned as a proton carrier and facilitated the low-energy step-wise proton transfer from protonated AEEA to AEEACOO-.Consequently,the presence of TA made it easier for AEEACOO-to obtain protons to decompose,resulting in enhanced CO_(2)desorption.In a word,introducing the TA as a proton-transfer mediator into the A/D NAA enhanced both the CO_(2)absorption performance and the regenerability,which was an efficient way to“kill two birds with one stone”.展开更多
Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the el...Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode.展开更多
LiBr as a promising redox mediator(RM)has been applied in Li-O_(2)batteries to improve oxygen evolution reaction kinetics and reduce overpotentials.However,the redox shuttle of Br_(3)^-can induce the unexpected reacti...LiBr as a promising redox mediator(RM)has been applied in Li-O_(2)batteries to improve oxygen evolution reaction kinetics and reduce overpotentials.However,the redox shuttle of Br_(3)^-can induce the unexpected reactions and thus cause the degradation of LiBr and the corrosion of Li anode,resulting in the poor cyclability and the low round-trip efficiency.Herein,MgBr_(2)is firstly employed with dual functions for Li-O_(2)batteries,which can serve as a RM and a SEI film-forming agent.The Br^(–)is beneficial to facilitating the decomposition of Li_(2)O_(2)and thus decreasing the overpotential.Additionally,a uniform SEI film containing Mg and MgO generates on Li anode surface by the in-situ spontaneous reactions of Mg^(2+)and Li anode in an O_(2)environment,which can suppress the redox shuttle of Br_(3)^-and improve the interface stability of Li anode and electrolyte.Benefiting from these advantages,the cycle life of Li-O_(2)battery with MgBr_(2)electrolyte is significantly extended.展开更多
Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rare...Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.展开更多
Background:In the current social environment,scarcity,as a universally present objective state,profoundly impacts individuals’decision-making and health through the subjective feeling it induces,known as a“scarcity ...Background:In the current social environment,scarcity,as a universally present objective state,profoundly impacts individuals’decision-making and health through the subjective feeling it induces,known as a“scarcity mindset.”Particularly,the feeling of scarcity related to money and sleep time is not only widespread but also directly linked to an individual’s mental health.Purpose:This study aims to delve into the relationship between the feeling of scarcity and mental health,with a specific focus on the relationship between the feeling of money scarcity or sleep time scarcity and mental health,as well as the role of sleep quality or life satisfaction in this relationship.Procedure:We determined the sampling quotas based on the population and economic development levels of each province in the“China Statistical Yearbook(2021)”(National Bureau of Statistics,2021).Participants were selected using the Probability Proportional to Size(PPS)sampling method.Data was collected by distributing online questionnaires to participants,and the relationships between the main variables were explored using structural equation modeling.Results:1.In China,the feeling of sleep time scarcity is stronger than the feeling of money scarcity among the public.2.The feeling of money scarcity is positively correlated with depression and anxiety,whereas the feeling of sleep time scarcity is only positively correlated with depression.3.The feeling of scarcity mainly leads to depression and self-denial through reducing life satisfaction,and it leads to anxiety through reducing sleep quality.Conclusion:The feeling of scarcity in money and sleep time is related to different dimensions of mental health.Therefore,reasonably planning financial allocation and ensuring an adequate amount of sleep can reduce the sense of scarcity,thereby improving mental health.Additionally,improving sleep quality and increasing life satisfaction can alleviate the adverse effects of scarcity on mental health.展开更多
[Objectives]To observe the clinical effect of the lotus needle cupping therapy for removing blood stasis in Zhuang medicine in treating PHNand its influence on inflammatory factors.[Methods]96 patients with PHN were r...[Objectives]To observe the clinical effect of the lotus needle cupping therapy for removing blood stasis in Zhuang medicine in treating PHNand its influence on inflammatory factors.[Methods]96 patients with PHN were randomly divided into three groups:lotus nee-dle cupping therapy group,TCM surrounding acupuncture group and gabapentin group.Venous blood and acupoint blood were collected at 0,21 and 42 d of treatment,and the expression levels of 5-HT,SP and CGRPinflammatory mediators were detected before and after treatment.The changes of VAS scores before,during and after treatment and the clinical efficacy were observed.[Results]The total effective rate of the lotus needle cupping group was 87.50%,which was better than that of the TCM acupuncture group(81.25%)and the gabapentin group(62.50%);after treatment,the VAS scores and the expression of inflammatory mediators in the three groups of patients were lower than those before treatment,and the decrease was more significant in the treatment group(P<0.05).[Conclusions]The lotus needle cupping therapy for removing blood stasis in Zhuang medicine is effective in treating PHN,and its mechanism is to reduce the release of inflammatory media-tors,reduce hyperalgesia,relieve pain and improve the quality of life of patients.展开更多
Breast cancer,one of the most frequent cancer types,is a leading cause of death in women worldwide.Estrogen receptor(ER)αis a nuclear hormone receptor that plays key roles in mammary gland development and breast canc...Breast cancer,one of the most frequent cancer types,is a leading cause of death in women worldwide.Estrogen receptor(ER)αis a nuclear hormone receptor that plays key roles in mammary gland development and breast cancer.About 75%of breast cancer cases are diagnosed as ER-positive;however,nearly half of these cancers are either intrinsically or inherently resistant to the current anti-estrogen therapies.Recent studies have identified an ER coactivator,Mediator Subunit 1(MED1),as a unique,tissue-specific cofactor that mediates breast cancer metastasis and treatment resistance.MED1 is overexpressed in over 50%of human breast cancer cases and co-amplifies with another important breast cancer gene,receptor tyrosine kinase HER2.Clinically,MED1 expression highly correlates with poor disease-free survival of breast cancer patients,and recent studies have reported an increased frequency of MED1 mutations in the circulating tumor cells of patients after treatment.In this review,we discuss the biochemical characterization of MED1 and its associated MED1/Mediator complex,its crosstalk with HER2 in anti-estrogen resistance,breast cancer stem cell formation,and metastasis both in vitro and in vivo.Furthermore,we elaborate on the current advancements in targeting MED1 using state-of-the-art RNA nanotechnology and discuss the future perspectives as well.展开更多
基金supported by the China Scholarship Council(to YW)the Swedish Research Council,No.2018-02601(to MS)+7 种基金the Alzheimer Foundation,No.AF-980695(to MS)the Stockholm County Council,No.RS2020-0731(to MS)the Foundation of Old Servants(to MS)the Gun and Bertil Stohne Foundation(to MS)the?hlén Foundation,No.233055(to MS)The Swedish Fund for Research without Animal Experiments(to MS)the Swedish Dementia Foundation(to MS)the Brain foundation,No.FO2022-0131(to MS)。
文摘Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte–derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42–induced Alzheimer's disease–like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease–like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42–induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.
基金financially supported by National Natural Science Foundation of China(No.22075171).
文摘Rechargeable lithium-carbon dioxide(Li-CO_(2))batteries have emerged as a highly promising approach to simultaneously address energy shortages and the greenhouse effect.However,certain limitations exist in Li-CO_(2)batteries like high charge overpotential and unstable Li metal interface,which adversely affect the energy efficiency and cycling life.The incorporation of soluble redox mediators(RMs)has proven effective in enhancing the charge transfer between lithium carbonate(Li_(2)CO_(3))and cathode,thereby substantially reducing the charge overpotential.Nevertheless,the severe shuttle effect of RMs results in the reactions with Li anode,not only exacerbating the corrosion of Li anode but also leading to the depletion of RMs and electrical energy efficiency.In this work,an organic compound containing large cation group,1-ethyl-3-methylimidazole bromide(EMIBr)is proposed as the defense donor RM for Li anode in Li-CO_(2)batteries to address the above problems simultaneously.During charging,Li_(2)CO_(3)oxidation kinetics can be accelerated by bromide anion pair(Br_(3)^(−)/Br^(−)).Meanwhile,the cations(EMI^(+))are preferentially adsorbed around the protruding tips of Li anode through electrostatic interaction driven by surface free energy,forming protective layers that effectively inhibit further Li deposition at these tips,which is verified by DFT calculations.Additionally,Li dendrites growth is inhibited by the electrostatic repulsion of polar groups in EMIBr,resulting in uniform Li deposition.Consequently,a lower overpotential(∼1.17 V)and a longer cycle life(∼200 cycles)have been obtained for Li-CO_(2)battery incorporating EMIBr.
基金supported by the National Natural Science Foundation of China,Nos.82272470 (to GN),82072439 (to GN),81930070 (to SF)the Tianjin Health Key Discipline Special Project,No.TJWJ2022XK011 (to GN)+2 种基金the Outstanding Youth Foundation of Tianjin Medical University General Hospital,No.22ZYYJQ01 (to GN)Tianjin Key Medical Disciplines,No.TJYXZDXK-027A (to SF)National Key Research and Development Program-Stem Cells and Transformation Research,No.2019YFA0112100 (to SF)
文摘Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim to control the spread of neuroinflammation during the acute phase but later hinder axon regeneration in later stages.Recent studies have enhanced our understanding of immunomodulation,revealing that injury-associated inflammation involves various cell types and molecules with positive and negative effects.This review employs bibliometric analysis to examine the literature on inflammatory mediators in spinal cord injury,highlighting recent research and providing a comprehensive overview of the current state of research and the latest advances in studies on neuroinflammation related to spinal cord injury.We summarize the immune and inflammatory responses at different stages of spinal cord injury,offering crucial insights for future research.Additionally,we review repair strategies based on inflammatory mediators for the injured spinal cord.Finally,this review discusses the current status and future directions of translational research focused on immune-targeting strategies,including pharmaceuticals,biomedical engineering,and gene therapy.The development of a combined,precise,and multitemporal strategy for the repair of injured spinal cords represents a promising direction for future research.
文摘Regulating the interfacial charge transfer is pivotal for elucidating the kinetics of engineering the interface between the light-harvesting semiconductor and the substrate/catalyst for photoelectrocatalytic water splitting.In this study,we constructed a superior Ti-doped hematite photoanode(TiFeO)by employing SnOx as an electron transfer mediator,partially oxidized graphene(pGO)as a hole transfer mediator,and molecular Co cubane as a water oxidation catalyst.The Co/pGO/TiFeO/SnO_(x)integrated system achieves a photocurrent density of 2.52 mA cm^(-2) at 1.23 VRHE,which is 2.4 times higher than bare photoanode(1.04 mA cm^(-2)),with operational stability up to 100 h.Kinetic measurements indicate that pGO can promote charge transfer from TiFeO to the Co cubane catalyst.In contrast,SnOx reduces charge recombination at the interface between TiFeO and the fluorinated tin oxide substrate.In-situ infrared spectroscopy shows the formation of an O–O bonded intermediate during water oxidation.This study highlights the crucial role of incorporating dual charge-transfer mediators into photoelectrodes for efficient solar energy conversion.
基金supported by the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(MOE)(2021RIS-003),South Koreasupported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00241916),South Korea+4 种基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(IRIS RS-2024-00352303),South Koreathe results of a study on the“Leaders in Industry-university Cooperation 3.0”project,supported by the Ministry of Education and National Research Foundation of Korea,South Koreasupported by the Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(2020R1A6A03038697),South Koreasupported by Learning&Academic research institution for Master’s PhD students,and Postdocs(LAMP)Program of the National Research Foundation of Korea(NRF)grant funded by the Ministry of Education(No.RS-2023-00301974),South Koreasupported by the Technology Innovation Program(RS-2024-00432013)funded By the Ministry of Trade,Industry&Energy(MOTIE,South Korea)。
文摘All-solid-state Li-S batteries(ASSLSBs)are more attractive owing to their achievable superior energy density at a reasonable cost and the solid electrolyte(SE)utilization mitigating the widely recognized polysulfide shuttle problem.While the volume expansion(~80%)that occurs during the initial transformation of sulfur to lithium sulfide induces mechanical stress,this can be avoided by using Li_(2)S as a cathode,which also permits the anode-free cell design.However,the high oxidation energy barrier of Li_(2)S cathode during the charging step limits its application in commercial devices.Redox mediators have been extensively used to reduce the oxidation energy barrier of Li_(2)S to the sulfur conversation and boost the reversible kinetics of the conversion reaction.In this review,we have summarized the available redox mediators for Li_(2)S cathode in ASSLSBs and its working mechanism.Moreover,we have proposed novel strategies and guidelines for designing effective redox mediators to boost the reversible conversion reaction.
基金Supported by the New Professor Research Program of KOREATECH,No.202501930001.
文摘This letter critically examines a recent study by Zhang et al investigating the mediating role of overweight in the association between depression and new-onset diabetes among middle-aged and older adults.The study provides com-pelling evidence that overweight mediates approximately 61%of this relationship,suggesting that depression may contribute to diabetes by influencing behaviors that lead to weight gain.This aligns with the understanding that depression can impact appetite regulation and physical activity.While the study employs a longitudinal design and robust statistical methods,limitations such as reliance on self-reported data and body mass index measurements warrant consideration.This analysis emphasizes the need for integrated interventions that address both mental and metabolic health for effective diabetes prevention.Future research should further explore the interplay of lifestyle factors,biological pathways,and social determinants in the development of this complex relationship.Ultimately,an integrated approach targeting both behavioral and biological components is crucial for the prevention and management of new-onset diabetes.
基金supported by the Natural Science Foundation of Guangxi Province(Nos.2023GXNSFAA026381 and 2020GXNSFBA297071)the National Natural Science Foundation of China(Nos.22006027 and 52260023)。
文摘Non-aqueous absorbents(NAAs)have attracted increasing attention for CO_(2)capture because of their great energy-saving potential.Primary diamines which can provide high CO_(2)absorption loading are promising candidates for formulating NAAs but suffer disadvantages in regenerability.In this study,a promising strategy that using tertiary amines(TAs)as proton-transfer mediators was proposed to enhance the regenerability of an aminoethylethanolamine(AEEA,diamine)/dimethyl sulfoxide(DMSO)(A/D)NAA.Surprisingly,some employed TAs such as N,N-diethylaminoethanol(DEEA),N,N,N’,N’’,N’’-pentamethyldiethylenetriamine(PMDETA),3-dimethylamino-1-propanol(3DMA1P),and N,N-dimethylethanolamine(DMEA)enhanced not only the regenerability of the A/D NAA but also the CO_(2)absorption performance.Specifically,the CO_(2)absorption loading and cyclic loading were increased by about 12.7%and 15.5%-22.7%,respectively.The TA-enhanced CO_(2)capture mechanism was comprehensively explored via nuclear magnetic resonance technique and quantum chemical calculations.During CO_(2)absorption,the TA acted as an ultimate proton acceptor for AEEA-zwitterion and enabled more AEEA to form carbamate species(AEEACOO-)to store CO_(2),thus enhancing CO_(2)absorption.For CO_(2)desorption,the TA first provided protons directly to AEEACOO-as a proton donor;moreover,it functioned as a proton carrier and facilitated the low-energy step-wise proton transfer from protonated AEEA to AEEACOO-.Consequently,the presence of TA made it easier for AEEACOO-to obtain protons to decompose,resulting in enhanced CO_(2)desorption.In a word,introducing the TA as a proton-transfer mediator into the A/D NAA enhanced both the CO_(2)absorption performance and the regenerability,which was an efficient way to“kill two birds with one stone”.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (NRF-2022R1C1C1011058)supported by the Korea Institute for Advancement of Technology (KIAT)grant funded by the Korean Government (MOTIE) (P0012748,HRD Program for Industrial Innovation).
文摘Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode.
基金supported by the National Natural Science Foundation of China(Nos.21978110 and 52171210)the Jilin Province Science and Technology Department Program(Nos.YDZJ202101ZYTS047,20220201130GX and 20200201187JC)the Science and Technology Project of Jilin Provincial Education Department(No.JJKH20210444KJ)。
文摘LiBr as a promising redox mediator(RM)has been applied in Li-O_(2)batteries to improve oxygen evolution reaction kinetics and reduce overpotentials.However,the redox shuttle of Br_(3)^-can induce the unexpected reactions and thus cause the degradation of LiBr and the corrosion of Li anode,resulting in the poor cyclability and the low round-trip efficiency.Herein,MgBr_(2)is firstly employed with dual functions for Li-O_(2)batteries,which can serve as a RM and a SEI film-forming agent.The Br^(–)is beneficial to facilitating the decomposition of Li_(2)O_(2)and thus decreasing the overpotential.Additionally,a uniform SEI film containing Mg and MgO generates on Li anode surface by the in-situ spontaneous reactions of Mg^(2+)and Li anode in an O_(2)environment,which can suppress the redox shuttle of Br_(3)^-and improve the interface stability of Li anode and electrolyte.Benefiting from these advantages,the cycle life of Li-O_(2)battery with MgBr_(2)electrolyte is significantly extended.
基金financially supported by the National Natural Science Foundation of China(22179145,22138013,and 21975287)Shandong Provincial Natural Science Foundation(ZR2020ZD08)+1 种基金Taishan Scholar Project(no.ts201712020)the startup support grant from China University of Petroleum(East China)
文摘Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.
基金the Key Projects of Philosophy and Social Sciences Research,Ministry of Education(Grant Number 21JZD038).
文摘Background:In the current social environment,scarcity,as a universally present objective state,profoundly impacts individuals’decision-making and health through the subjective feeling it induces,known as a“scarcity mindset.”Particularly,the feeling of scarcity related to money and sleep time is not only widespread but also directly linked to an individual’s mental health.Purpose:This study aims to delve into the relationship between the feeling of scarcity and mental health,with a specific focus on the relationship between the feeling of money scarcity or sleep time scarcity and mental health,as well as the role of sleep quality or life satisfaction in this relationship.Procedure:We determined the sampling quotas based on the population and economic development levels of each province in the“China Statistical Yearbook(2021)”(National Bureau of Statistics,2021).Participants were selected using the Probability Proportional to Size(PPS)sampling method.Data was collected by distributing online questionnaires to participants,and the relationships between the main variables were explored using structural equation modeling.Results:1.In China,the feeling of sleep time scarcity is stronger than the feeling of money scarcity among the public.2.The feeling of money scarcity is positively correlated with depression and anxiety,whereas the feeling of sleep time scarcity is only positively correlated with depression.3.The feeling of scarcity mainly leads to depression and self-denial through reducing life satisfaction,and it leads to anxiety through reducing sleep quality.Conclusion:The feeling of scarcity in money and sleep time is related to different dimensions of mental health.Therefore,reasonably planning financial allocation and ensuring an adequate amount of sleep can reduce the sense of scarcity,thereby improving mental health.Additionally,improving sleep quality and increasing life satisfaction can alleviate the adverse effects of scarcity on mental health.
基金Supported by Guangxi Natural Science Foundation(2018GXNSFAA050141)Basic AbilityImprovement Project for Young and Middle-aged Teachers in Guangxi Zhuang Autonomous Region(2019KY0336)Guangxi Famous Tradi-tional Chinese Medicine Inheritance Studio-Qin Zujie[GuiZhongYiYaoKeJiao-Fa(2021)No.6].
文摘[Objectives]To observe the clinical effect of the lotus needle cupping therapy for removing blood stasis in Zhuang medicine in treating PHNand its influence on inflammatory factors.[Methods]96 patients with PHN were randomly divided into three groups:lotus nee-dle cupping therapy group,TCM surrounding acupuncture group and gabapentin group.Venous blood and acupoint blood were collected at 0,21 and 42 d of treatment,and the expression levels of 5-HT,SP and CGRPinflammatory mediators were detected before and after treatment.The changes of VAS scores before,during and after treatment and the clinical efficacy were observed.[Results]The total effective rate of the lotus needle cupping group was 87.50%,which was better than that of the TCM acupuncture group(81.25%)and the gabapentin group(62.50%);after treatment,the VAS scores and the expression of inflammatory mediators in the three groups of patients were lower than those before treatment,and the decrease was more significant in the treatment group(P<0.05).[Conclusions]The lotus needle cupping therapy for removing blood stasis in Zhuang medicine is effective in treating PHN,and its mechanism is to reduce the release of inflammatory media-tors,reduce hyperalgesia,relieve pain and improve the quality of life of patients.
基金Project supported by the National Cancer Institute(No.R01CA197865),the Ride Cincinnati Awardthe National Center for Advancing Translation Science of the National Institutes of Health(No.UL1TR001425),USA
文摘Breast cancer,one of the most frequent cancer types,is a leading cause of death in women worldwide.Estrogen receptor(ER)αis a nuclear hormone receptor that plays key roles in mammary gland development and breast cancer.About 75%of breast cancer cases are diagnosed as ER-positive;however,nearly half of these cancers are either intrinsically or inherently resistant to the current anti-estrogen therapies.Recent studies have identified an ER coactivator,Mediator Subunit 1(MED1),as a unique,tissue-specific cofactor that mediates breast cancer metastasis and treatment resistance.MED1 is overexpressed in over 50%of human breast cancer cases and co-amplifies with another important breast cancer gene,receptor tyrosine kinase HER2.Clinically,MED1 expression highly correlates with poor disease-free survival of breast cancer patients,and recent studies have reported an increased frequency of MED1 mutations in the circulating tumor cells of patients after treatment.In this review,we discuss the biochemical characterization of MED1 and its associated MED1/Mediator complex,its crosstalk with HER2 in anti-estrogen resistance,breast cancer stem cell formation,and metastasis both in vitro and in vivo.Furthermore,we elaborate on the current advancements in targeting MED1 using state-of-the-art RNA nanotechnology and discuss the future perspectives as well.