Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties a...The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics.展开更多
Using nine ice-tethered buoys deployed across the marginal ice zone(MIZ)and pack ice zone(PIZ)north of the Laptev Sea during the expedition of the Multidisciplinary drifting Observatory for the Study of Arctic Climate...Using nine ice-tethered buoys deployed across the marginal ice zone(MIZ)and pack ice zone(PIZ)north of the Laptev Sea during the expedition of the Multidisciplinary drifting Observatory for the Study of Arctic Climate(MOSAiC)in 2019-2020,we characterized the spatiotemporal variations in sea ice kinematics and deformation between October 2019 and July 2020 in the Transpolar Drift(TPD).From October to November,the buoys were in the upstream area of the TPD;spatial variations of deformation rates were significantly correlated with initial ice thickness(R=−0.84,P<0.05).From December 2019 to March 2020,the buoys were in the high Arctic and the ice cover was consolidated;heterogeneity in ice kinematics as measured across the buoys reduced by 65%.From April to May 2020,the buoys were in the downstream TPD;amplified spatial variations in ice kinematics were observed.This is because two buoys had drifted over the shallow waters north of Svalbard earlier;trajectory-stretching exponents derived from the data from these two buoys indicate deformation rates(10.6 d^(−1))that were about twice those in the deep basin(4.2 d^(−1)).By June 2020,a less consolidated ice pack and enhanced tidal forcing in the Fram Strait MIZ resulted in ice deformation with a semi-diurnal power spectral density of>0.25 d^(−1),which is about 1.5 times that in PIZ.Therefore,in both the upstream and downstream regions of the TPD,the transition between the MIZ and the PIZ contributes to the spatial and seasonal variations of sea ice motion and deformation.The results from this study can be used to support the characterization of the momentum balance and influencing factors during the ice advection along the TPD,which is a crucial corridor for Arctic sea ice outflow to the north Atlantic Ocean.展开更多
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is...Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.展开更多
Aviation kerosene RP-3 is extensively used in China.This paper details the measurement of the density of Chinese aviation kerosene RP-3 employing the flow method under high-pressure and high-temperature conditions.The...Aviation kerosene RP-3 is extensively used in China.This paper details the measurement of the density of Chinese aviation kerosene RP-3 employing the flow method under high-pressure and high-temperature conditions.The methodology utilizes circular tubes with two different diameters.The density of aviation kerosene RP-3 was experimentally measured for the first time within a pressure range from 6 MPa to 8 MPa and a temperature range from 323 K to 783 K,with a maximum relative uncertainty of 0.35%.The experimental setup used n-decane for calibration,achieving an average calibration error of 0.91%.The data indicate that the density of RP-3 ranges from 764 kg/m^(3)to 247 kg/m^(3)under the tested conditions.The results show that the density of kerosene RP-3 decreases with an increase in temperature at a constant pressure,and at a given temperature,a higher pressure results in a higher density.Polynomial fitting was applied to the data,resulting in the average absolute deviation of 1.09%,0.80%,and 0.76%at different pressures of 6,7,and 8 MPa,respectively.展开更多
Ensuring highway safety relies heavily on pavement friction resistance.To enable network-level pavement skid resistance monitoring and management,this study proposes a non-contact three-dimensional laser surface testi...Ensuring highway safety relies heavily on pavement friction resistance.To enable network-level pavement skid resistance monitoring and management,this study proposes a non-contact three-dimensional laser surface testing method to obtain detailed aggregate surface data.The existing contact-based skid resistance measurement methods suffer from poor reproducibility and repeatability,hindering their application for network-level management.In this research,traditional multiple linear regression and four machine learning methods,support vector machine(SVM),random forest(RF),gradient boosting decision tree(GBDT),and convolutional neural network(CNN),are utilized to evaluate and predict pavement frictional performance.To assess the proposed methods,data from 45 pavement sites in Oklahoma,including 6 major preventive maintenance(PM)treatments and 7 typical types of aggregates,are collected.Parallel data acquisition is conducted at highway speeds using a grip tester and a high-speed texture profiler to measure pavement skid resistance and surface macro-texture,respectively.Aggregate properties are captured in 3D using a portable ultra-high-resolution 3D laser imaging scanner,leading to the calculation of four types of 3D aggregate parameters characterizing the micro-texture of aggregate surfaces.The relationship between pavement surface friction and texture is explored using machine learning models.The results reveal that the random forest and gradient boosting decision tree models exhibit the highest accuracy,SVM and CNN perform moderately,while the traditional linear regression method fares the worst.By assessing the importance of the 38 parameter variables,the most critical 21 variables were selected for model development.Test results demonstrate that the GBDT model exhibits the best predictive performance,with an explanatory capability of 87.4%for road friction performance.The findings demonstrate the feasibility of replacing contact-based pavement friction evaluation with non-contact texture measurements,offering promising prospects for a network-level pavement skid resistance monitoring and management system.展开更多
Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements u...Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.展开更多
The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational re...The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational restraints on the proteins or their complexes.The rigid connection of the nitroxide spin label to the protein improves the accuracy and precision of distance measurement.We report a new spin labelling approach by formation of thioester bond between nitroxide(NO)spin label,NOAI(NO spin labels activated by acetylimidazole),and a protein thiol,and this spin labeling method has demonstrated high performance in DEER distance measurement on proteins.The results showed that NOAI has shorter connection to the protein ligation site than 2,2,5,5-tetramethyl-pyrroline-1-oxyl methanethiosulfonate(MTSL)and 3-maleimido-proxyl(M-Prox)in the respective protein conjugate and produces narrower distance distributions for the tested proteins including ubiquitin(Ub),immunoglobulin-binding b1 domain of streptococcal protein G(GB1),and second mitochondria-derived activator of caspases(Smac).The NOAI protein conjugate connected by a thioester bond is resistant to reducing reagent and offers highfidelity DEER distance measurements in cell lysates.展开更多
Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of S...Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)is the most widespread chronic liver disease signified by serious life-threatening conditions.The prevalence of MASLD increases along the growing prevalen...Metabolic dysfunction-associated steatotic liver disease(MASLD)is the most widespread chronic liver disease signified by serious life-threatening conditions.The prevalence of MASLD increases along the growing prevalence in obesity and metabolic syndrome.To minimize costs and complications,non-invasive diagnostic tools,including transient elastography(TE),were introduced for assessment of MASLD.TE measures liver stiffness(LS),a clinical marker for the diagnosis of liver fibrosis and cirrhosis.LS measurements are based on ultrasound wave imaging and quantification.Vibration-controlled TE,including FibroScan®,is commonly used TE methods which can accurately identify the degree of liver fibrosis and cirrhosis progression.TE was reported to predict the progression towards hepatocellular carcinoma,portal hypertension,and varices.However,the accuracy of LS diagnostics alone in patients with MASLD remains controversial.TE measurements have several limitations,including inadequate precision due to focal liver lesions,cholestasis,inflammation,and other pathological and anatomical factors which can lead to the stiffness variability.Overestimations of TE readings were reported in obese patients with body mass index(BMI)over 30 kg/m2,and older patients with ascites,diabetes,or hypertension.Not all MASLD patients have high BMI.The prevalence of obesity among MASLD patients varies worldwide,indicating the urgent need for comprehensive diagnostic tools.In patients with MASLD,improved diagnostic accuracy has been demonstrated by combining LS measurements with other blood test-based scores and simple clinical parameters(agile scores based on age,sex,platelet count,aminotransferases,and diabetes).This study reviews the limitations of TE-based diagnostics and discusses the combined scoring algorithm.In conclusion,the sequence of LS measurements along assessment of other important clinical markers is an effective,low-cost,reliable tool to identify and monitor fibrosis progression in MASLD.展开更多
Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,...Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.展开更多
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen...In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.展开更多
Increased attentions to vehicle emission of NH_(3)have been paid since it is generally regarded as an important source in urban areas.Here,we developed a movable instrument based on Differential Optical Absorption Spe...Increased attentions to vehicle emission of NH_(3)have been paid since it is generally regarded as an important source in urban areas.Here,we developed a movable instrument based on Differential Optical Absorption Spectroscopy(DOAS)principle for detecting on-road NH_(3),which can avoid the losses in the sampling process attributed to the non-sampling methods.For this mobile DOAS,the temporal resolution,detection limit and relative error for NH_(3)were 1 min,2.29 ppbv and 4.57%±2.44%,respectively.By employed to the on-road measurements along the arterial highway in Shanghai,the spatial distributions of NH_(3)and NO were obtained,and their dependence of traffic and road conditions were studied.The slopes of linear regression between NH_(3)and NO were 0.40,0.02 and 0.07 on the Middle Ring Road,Outer Ring Road and Chongming Island Ring Road.It indicates that light gasoline vehicles(LGVs)were found to be the main contributor to NH_(3)emissions,while heavy-duty diesel vehicles(HDVs)mainly emitted NO.Based on the measured NH_(3)in the tunnel,the mileagebased NH_(3)emission factor per vehicle was estimated to be 17.9±6.3 mg/km.The reported open-path instrument can be broadly used in on-road pollutant monitoring or vehicle emissions,and the measurements can reveal the real situation of emission characteristics,even find the abnormal operations of vehicle catalyst system.展开更多
In our study of super quantum discord between two excitonic qubits inside a coupled semiconductor quantum dots system,our primary focus is to uncover the impact of weak measurement on its quantum characteristics.To ac...In our study of super quantum discord between two excitonic qubits inside a coupled semiconductor quantum dots system,our primary focus is to uncover the impact of weak measurement on its quantum characteristics.To achieve this,we analyze how varying the measurement strength x,affects this super quantum correlation in the presence of thermal effects.Additionally,we assess the effect of this variation on the system's evolution against its associated quantum parameters;external electric fields,exciton-exciton dipole interaction energy and F?rster interaction.Our findings indicate that adjusting x to smaller values effectively enhances the super quantum correlation,making weak measurements act as a catalyst.This adjustment ensures its robustness against thermal effects while preserving the non-classical attributes of the system.Furthermore,our study unveils that the effect of weak measurements on this latter surpasses the quantum effects associated with the system.Indeed,manipulating the parameter x allows the weak measurement to function as a versatile tool for modulating quantum characteristics and controlling exciton-exciton interactions within the coupled semiconductor quantum dots system.展开更多
Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-b...Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-boundary Euphrates-Tigris Basin,supporting crucial dams for water supply,irrigation and energy production.Thus,easy,frequent,correct and economical ways of measuring the snowpack is crucial.The snow properties at specific locations in the mountainous eastern regions over the two snow seasons(2018 and 2019)were studied by using different instruments and techniques,snow pit(box/cylinder/wedge cutter types),snow tube(Federal Sampler)and SnoTel(Snowpack Analyzer).The results point out a 1.7%-7.1%variation between different cutter type snow density measurements within snow pit analysis and the long-term utilized snow tube observations show a closer relation to box/cylinder type cutters.As for the continuous SnoTel observations,a variation of 2.4%-9.8%with various cutter types and a 5.9%difference regarding the snow tube density results are detected.These findings indicate a close range among different instruments,but it is the best when all three systems complement each other to characterize the snowpack effectively in the complex terrain since each has its own advantages.展开更多
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary...We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary derivative of the ternary compound PrRu_(2)Zn_(20) that exhibits a structural phase transition at T_S=138 K.In PrRu_(2)In_(2)Zn_(18),the Zn atoms at the 16c site in PrRu_(2)Zn_(20) are selectively replaced by In atoms.A monotonic increase was observed in the temperature dependence of elastic constants C_L=(C_(11)+2C_(12)+4C_(44))/3 and C_(T)=(C_(11)-C_(12)+C_(44))/3 in the temperature range around T_(S) to which an elastic softening was observed in(C_(11)-C_(12))/2 for PrRu_(2)Zn_(20).The disappearance of the softening indicates that the structural transition in PrRu_(2)Zn_(20) is suppressed by the substitution of Zn ions by In ones with a larger ionic radius.Alternatively,the C_(T) of PrRu_(2)In_(2)Zn_(18) exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers Γ_(3) ground state.We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRu_(2)In_(2)Zn_(18) grown under different conditions.展开更多
We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is know...We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.展开更多
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior with...This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior without relying on constitutive equations in the deteriorated region.This approach contributes to advancing the field of intrinsic equation-free mechanics.The methodology combines measured strain fields with data-model coupling driven algorithms.The gradient and Canny operators are utilized to process the strain field data,enabling the determination of the deterioration region's location.Meanwhile,an adaptive model building method is proposed for constructing coupling driven models.To address the issue of unknown datasets during computation,a dataset updating strategy based on a differential evolutionary algorithm is introduced.The resulting optimal dataset is then used to generate stress field results.Validation against finite element method calculations demonstrates the accuracy of the proposed method in obtaining full-field stresses in specimens with local degradation behavior.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by the National Natural Science Foundation of China (Grant No. 52172259)the National Key Research and Development Program of China (Grant Nos. 2021YFA0718700 and 2022YFB3803900)the Fundamental Research Funds for the Inner Mongolia Normal University (Grant No. 2022JBTD008)。
文摘The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics.
基金supported by the National Key Research and Development Program of China(Grant no.2021YFC2803304)the National Natural Science Foundation of China(Grant nos.52192691 and 52192690)the Program of Shanghai Academic/Technology Research Leader(Grant no.22XD1403600).
文摘Using nine ice-tethered buoys deployed across the marginal ice zone(MIZ)and pack ice zone(PIZ)north of the Laptev Sea during the expedition of the Multidisciplinary drifting Observatory for the Study of Arctic Climate(MOSAiC)in 2019-2020,we characterized the spatiotemporal variations in sea ice kinematics and deformation between October 2019 and July 2020 in the Transpolar Drift(TPD).From October to November,the buoys were in the upstream area of the TPD;spatial variations of deformation rates were significantly correlated with initial ice thickness(R=−0.84,P<0.05).From December 2019 to March 2020,the buoys were in the high Arctic and the ice cover was consolidated;heterogeneity in ice kinematics as measured across the buoys reduced by 65%.From April to May 2020,the buoys were in the downstream TPD;amplified spatial variations in ice kinematics were observed.This is because two buoys had drifted over the shallow waters north of Svalbard earlier;trajectory-stretching exponents derived from the data from these two buoys indicate deformation rates(10.6 d^(−1))that were about twice those in the deep basin(4.2 d^(−1)).By June 2020,a less consolidated ice pack and enhanced tidal forcing in the Fram Strait MIZ resulted in ice deformation with a semi-diurnal power spectral density of>0.25 d^(−1),which is about 1.5 times that in PIZ.Therefore,in both the upstream and downstream regions of the TPD,the transition between the MIZ and the PIZ contributes to the spatial and seasonal variations of sea ice motion and deformation.The results from this study can be used to support the characterization of the momentum balance and influencing factors during the ice advection along the TPD,which is a crucial corridor for Arctic sea ice outflow to the north Atlantic Ocean.
基金National Key Research and Development Program of China(2021YFA1501302)the National Natural Science Foundation of China(22121004,22122808)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities(BP0618007)for financial supportsupported by the XPLORER PRIZE.
文摘Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.
基金supported by the Science Center for Gas Turbine Project,China(No.P2022-C-II-005-001)。
文摘Aviation kerosene RP-3 is extensively used in China.This paper details the measurement of the density of Chinese aviation kerosene RP-3 employing the flow method under high-pressure and high-temperature conditions.The methodology utilizes circular tubes with two different diameters.The density of aviation kerosene RP-3 was experimentally measured for the first time within a pressure range from 6 MPa to 8 MPa and a temperature range from 323 K to 783 K,with a maximum relative uncertainty of 0.35%.The experimental setup used n-decane for calibration,achieving an average calibration error of 0.91%.The data indicate that the density of RP-3 ranges from 764 kg/m^(3)to 247 kg/m^(3)under the tested conditions.The results show that the density of kerosene RP-3 decreases with an increase in temperature at a constant pressure,and at a given temperature,a higher pressure results in a higher density.Polynomial fitting was applied to the data,resulting in the average absolute deviation of 1.09%,0.80%,and 0.76%at different pressures of 6,7,and 8 MPa,respectively.
基金study is under the research project“development of aggregate characteristics-based preventive maintenance treatments using 3D laser imaging and aggregate imaging technology for optimized skid resistance of pavements”sponsored by the Oklahoma Department of Transportation(ODOT SPR 2275).
文摘Ensuring highway safety relies heavily on pavement friction resistance.To enable network-level pavement skid resistance monitoring and management,this study proposes a non-contact three-dimensional laser surface testing method to obtain detailed aggregate surface data.The existing contact-based skid resistance measurement methods suffer from poor reproducibility and repeatability,hindering their application for network-level management.In this research,traditional multiple linear regression and four machine learning methods,support vector machine(SVM),random forest(RF),gradient boosting decision tree(GBDT),and convolutional neural network(CNN),are utilized to evaluate and predict pavement frictional performance.To assess the proposed methods,data from 45 pavement sites in Oklahoma,including 6 major preventive maintenance(PM)treatments and 7 typical types of aggregates,are collected.Parallel data acquisition is conducted at highway speeds using a grip tester and a high-speed texture profiler to measure pavement skid resistance and surface macro-texture,respectively.Aggregate properties are captured in 3D using a portable ultra-high-resolution 3D laser imaging scanner,leading to the calculation of four types of 3D aggregate parameters characterizing the micro-texture of aggregate surfaces.The relationship between pavement surface friction and texture is explored using machine learning models.The results reveal that the random forest and gradient boosting decision tree models exhibit the highest accuracy,SVM and CNN perform moderately,while the traditional linear regression method fares the worst.By assessing the importance of the 38 parameter variables,the most critical 21 variables were selected for model development.Test results demonstrate that the GBDT model exhibits the best predictive performance,with an explanatory capability of 87.4%for road friction performance.The findings demonstrate the feasibility of replacing contact-based pavement friction evaluation with non-contact texture measurements,offering promising prospects for a network-level pavement skid resistance monitoring and management system.
基金supported by the Chinese Scholarship Council under Grant 202106910006.
文摘Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.
基金supported by National Natural Science Foundation of China(22161142018,21991081,22177056,and 22174074)the Ministry of Science and Technology of China(2021YFA1600304).
文摘The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational restraints on the proteins or their complexes.The rigid connection of the nitroxide spin label to the protein improves the accuracy and precision of distance measurement.We report a new spin labelling approach by formation of thioester bond between nitroxide(NO)spin label,NOAI(NO spin labels activated by acetylimidazole),and a protein thiol,and this spin labeling method has demonstrated high performance in DEER distance measurement on proteins.The results showed that NOAI has shorter connection to the protein ligation site than 2,2,5,5-tetramethyl-pyrroline-1-oxyl methanethiosulfonate(MTSL)and 3-maleimido-proxyl(M-Prox)in the respective protein conjugate and produces narrower distance distributions for the tested proteins including ubiquitin(Ub),immunoglobulin-binding b1 domain of streptococcal protein G(GB1),and second mitochondria-derived activator of caspases(Smac).The NOAI protein conjugate connected by a thioester bond is resistant to reducing reagent and offers highfidelity DEER distance measurements in cell lysates.
基金supported by the National Key R&D Program of China (No. 2023YFA1606401 and 2018YFA0404401)the Young Scholar of Regional Development,CAS ([2023] 15)+1 种基金Chinese Academy of Sciences Stable Support for Young Teams in Basic Research (No. YSBR-002)Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (No. XDB34000000)
文摘Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)is the most widespread chronic liver disease signified by serious life-threatening conditions.The prevalence of MASLD increases along the growing prevalence in obesity and metabolic syndrome.To minimize costs and complications,non-invasive diagnostic tools,including transient elastography(TE),were introduced for assessment of MASLD.TE measures liver stiffness(LS),a clinical marker for the diagnosis of liver fibrosis and cirrhosis.LS measurements are based on ultrasound wave imaging and quantification.Vibration-controlled TE,including FibroScan®,is commonly used TE methods which can accurately identify the degree of liver fibrosis and cirrhosis progression.TE was reported to predict the progression towards hepatocellular carcinoma,portal hypertension,and varices.However,the accuracy of LS diagnostics alone in patients with MASLD remains controversial.TE measurements have several limitations,including inadequate precision due to focal liver lesions,cholestasis,inflammation,and other pathological and anatomical factors which can lead to the stiffness variability.Overestimations of TE readings were reported in obese patients with body mass index(BMI)over 30 kg/m2,and older patients with ascites,diabetes,or hypertension.Not all MASLD patients have high BMI.The prevalence of obesity among MASLD patients varies worldwide,indicating the urgent need for comprehensive diagnostic tools.In patients with MASLD,improved diagnostic accuracy has been demonstrated by combining LS measurements with other blood test-based scores and simple clinical parameters(agile scores based on age,sex,platelet count,aminotransferases,and diabetes).This study reviews the limitations of TE-based diagnostics and discusses the combined scoring algorithm.In conclusion,the sequence of LS measurements along assessment of other important clinical markers is an effective,low-cost,reliable tool to identify and monitor fibrosis progression in MASLD.
基金supported by the National Natural Science Foundation of China (No.41875155)Natural Key Research and Development Program of China (No.2019YFA0607004)+1 种基金Environment and Conservation Fund/Woo Wheelock Green Fund (No.ECWW09EG04)Strategic Priority Research Program (B)of the Chinese Academy of Sciences (No.XDB05040502)。
文摘Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.
文摘In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.
基金supported by the National Natural Science Foundation of China (Nos.21976031,42075079,and 22176037)。
文摘Increased attentions to vehicle emission of NH_(3)have been paid since it is generally regarded as an important source in urban areas.Here,we developed a movable instrument based on Differential Optical Absorption Spectroscopy(DOAS)principle for detecting on-road NH_(3),which can avoid the losses in the sampling process attributed to the non-sampling methods.For this mobile DOAS,the temporal resolution,detection limit and relative error for NH_(3)were 1 min,2.29 ppbv and 4.57%±2.44%,respectively.By employed to the on-road measurements along the arterial highway in Shanghai,the spatial distributions of NH_(3)and NO were obtained,and their dependence of traffic and road conditions were studied.The slopes of linear regression between NH_(3)and NO were 0.40,0.02 and 0.07 on the Middle Ring Road,Outer Ring Road and Chongming Island Ring Road.It indicates that light gasoline vehicles(LGVs)were found to be the main contributor to NH_(3)emissions,while heavy-duty diesel vehicles(HDVs)mainly emitted NO.Based on the measured NH_(3)in the tunnel,the mileagebased NH_(3)emission factor per vehicle was estimated to be 17.9±6.3 mg/km.The reported open-path instrument can be broadly used in on-road pollutant monitoring or vehicle emissions,and the measurements can reveal the real situation of emission characteristics,even find the abnormal operations of vehicle catalyst system.
文摘In our study of super quantum discord between two excitonic qubits inside a coupled semiconductor quantum dots system,our primary focus is to uncover the impact of weak measurement on its quantum characteristics.To achieve this,we analyze how varying the measurement strength x,affects this super quantum correlation in the presence of thermal effects.Additionally,we assess the effect of this variation on the system's evolution against its associated quantum parameters;external electric fields,exciton-exciton dipole interaction energy and F?rster interaction.Our findings indicate that adjusting x to smaller values effectively enhances the super quantum correlation,making weak measurements act as a catalyst.This adjustment ensures its robustness against thermal effects while preserving the non-classical attributes of the system.Furthermore,our study unveils that the effect of weak measurements on this latter surpasses the quantum effects associated with the system.Indeed,manipulating the parameter x allows the weak measurement to function as a versatile tool for modulating quantum characteristics and controlling exciton-exciton interactions within the coupled semiconductor quantum dots system.
基金supported by the Scientific Research Project(BAP)of Eskişehir Technical University,project number 1610F676.
文摘Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-boundary Euphrates-Tigris Basin,supporting crucial dams for water supply,irrigation and energy production.Thus,easy,frequent,correct and economical ways of measuring the snowpack is crucial.The snow properties at specific locations in the mountainous eastern regions over the two snow seasons(2018 and 2019)were studied by using different instruments and techniques,snow pit(box/cylinder/wedge cutter types),snow tube(Federal Sampler)and SnoTel(Snowpack Analyzer).The results point out a 1.7%-7.1%variation between different cutter type snow density measurements within snow pit analysis and the long-term utilized snow tube observations show a closer relation to box/cylinder type cutters.As for the continuous SnoTel observations,a variation of 2.4%-9.8%with various cutter types and a 5.9%difference regarding the snow tube density results are detected.These findings indicate a close range among different instruments,but it is the best when all three systems complement each other to characterize the snowpack effectively in the complex terrain since each has its own advantages.
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金Project supported by the Soft-Path Science and Engineering Research Center (SPERC),Iwate Universitythe JSPS KAKENHI (Grant Nos. JP18K03530,JP21K04622, and JP21K13869)。
文摘We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary derivative of the ternary compound PrRu_(2)Zn_(20) that exhibits a structural phase transition at T_S=138 K.In PrRu_(2)In_(2)Zn_(18),the Zn atoms at the 16c site in PrRu_(2)Zn_(20) are selectively replaced by In atoms.A monotonic increase was observed in the temperature dependence of elastic constants C_L=(C_(11)+2C_(12)+4C_(44))/3 and C_(T)=(C_(11)-C_(12)+C_(44))/3 in the temperature range around T_(S) to which an elastic softening was observed in(C_(11)-C_(12))/2 for PrRu_(2)Zn_(20).The disappearance of the softening indicates that the structural transition in PrRu_(2)Zn_(20) is suppressed by the substitution of Zn ions by In ones with a larger ionic radius.Alternatively,the C_(T) of PrRu_(2)In_(2)Zn_(18) exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers Γ_(3) ground state.We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRu_(2)In_(2)Zn_(18) grown under different conditions.
基金Project supported by Indian Institute of Engineering Science and Technology, Shibpur, India
文摘We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金supported by the Fundamental Research Fund for the Central Universities(Grant No.BLX202226)。
文摘This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior without relying on constitutive equations in the deteriorated region.This approach contributes to advancing the field of intrinsic equation-free mechanics.The methodology combines measured strain fields with data-model coupling driven algorithms.The gradient and Canny operators are utilized to process the strain field data,enabling the determination of the deterioration region's location.Meanwhile,an adaptive model building method is proposed for constructing coupling driven models.To address the issue of unknown datasets during computation,a dataset updating strategy based on a differential evolutionary algorithm is introduced.The resulting optimal dataset is then used to generate stress field results.Validation against finite element method calculations demonstrates the accuracy of the proposed method in obtaining full-field stresses in specimens with local degradation behavior.