The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties a...The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics.展开更多
BACKGROUND Clinically significant portal hypertension(CSPH)is a crucial prognostic deter-minant for liver-related events(LREs)in patients with compensated viral cir-rhosis.Liver stiffness measurement(LSM)-related mark...BACKGROUND Clinically significant portal hypertension(CSPH)is a crucial prognostic deter-minant for liver-related events(LREs)in patients with compensated viral cir-rhosis.Liver stiffness measurement(LSM)-related markers may help to predict the risk of LREs.AIM To evaluate the value of LSM and its composite biomarkers[LSM-platelet ratio(LPR),LSM-albumin ratio(LAR)]in predicting LREs.METHODS This study retrospectively enrolled compensated viral cirrhosis patients with CSPH.The Cox regression model was employed to examine the prediction of LSM,LPR,and LAR for LREs.The model performance was assessed through receiver operating characteristic,decision curve,and time-dependent area under the curve analysis.The Kaplan-Meier curve was used to evaluate the cumulative incidence of LREs,and further stratified analysis of different LREs was per-formed.RESULTS A total of 598 patients were included,and 319 patients(53.3%)developed LREs during follow-up.Multivariate proportional hazards modeling demonstrated that LSM,LPR,and LAR were independent predictors of LREs.LPR had better performance in predicting LREs than LAR and LSM(area under the curve=0.780,0.727,0.683,respectively,all P<0.05).The cumulative incidence of LREs in the high-risk group were significantly higher than that in the low-risk group(P<0.001).Among the different LREs,LPR was superior to LSM and LAR in predicting liver decompensation,while the difference in predicting hepatocellular carcinoma and liver-related death was relatively small.CONCLUSION LPR is superior to LSM and LAR in predicting LREs in compensated viral cirrhosis patients with CSPH,especially in predicting liver decompensation.展开更多
Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness...Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.展开更多
Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJ...Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors.展开更多
In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array...In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices.展开更多
Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hinde...Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hindered this progress.In this work,we present a systematic protocol for electrochemical measurements to thoroughly evaluate the activity and stability of OER electrocatalysts.We begin with a detailed introduction to constructing the electrochemical system,encompassing experimental setup and the selection criteria for electrodes and electrolytes.Potential contaminants originating from electrolytes,cells,and electrodes are identified and their impacts are discussed.We also examine the effects of external factors,such as temperature,magnetic fields,and natural light,on OER measurements.The protocol outlines operational mechanisms and recommended settings for various electrochemical techniques,including cyclic voltammetry(CV),potentiostatic electrochemical impedance spectroscopy(PEIS),Tafel slope analysis,and pulse voltammetry(PV).We summarize existing evaluation methodologies for assessing intrinsic activities and long-term stabilities of catalysts.Based on these discussions,we propose a comprehensive protocol for evaluating OER electrocatalysts’performance.Finally,we offer perspectives on advancing OER catalysts from laboratory research to industrial applications.展开更多
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult...This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.展开更多
The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale ...The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.展开更多
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf...Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.展开更多
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts....The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.展开更多
Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propul...Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion(In-FEEP)micro-thruster using three methods based on a pendulum:direct thrust measurement,indirect plume momentum transfer and beam current diagnostics.The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator,achieving a resolution better than 0.1μN.Key performance factors such as ionization and plume divergence of ejected charged particles were also examined.The study reveals that the high applied voltage induces significant electrostatic interference,becoming the dominant source of error in direct thrust measurements.Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously,showing strong agreement within a deviation of less than 0.2N across the operational thrust range.The results from all three methods are consistent within the error margins,verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.展开更多
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is...Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.展开更多
Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements u...Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.展开更多
Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and ...Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials.展开更多
Lactate,as a metabolite,plays a significant role in a number of fields,including medical diagnostics,exercise physiology and food science.Traditional methods for lactate measurement often involve expensive and cumbers...Lactate,as a metabolite,plays a significant role in a number of fields,including medical diagnostics,exercise physiology and food science.Traditional methods for lactate measurement often involve expensive and cumbersome instrumentation.This study developed a portable and low-cost lactate measurement system,including independently detectable hardware circuits and user-friendly embedded software,computer,and smartphone applications.The experiment verified that the relative error of the detection current in the device circuit was less than 1%.The electrochemical performance was measured by comparing the[Fe(CN)_(6)]^(3−)/[Fe(CN)_(6)]^(4−)solution with the desktop electrochemical workstation CHI660E,and a nearly consistent chronoamperometry(CA)curve was obtained.Two modified lactate sensors were used for CA testing of lactate.Within the concentration range of 0.1 mmol·L^(−1)to 20 mmol·L^(−1),there was a good linear relationship between lactate concentration and steady-state current,with a correlation coefficient(R2)greater than 0.99 and good repeatability,demonstrating the reliability of the developed device.The lactate measurement system developed in this study not only provides excellent detection performance and reliability,but also achieves portability and low cost,providing a new solution for lactate measurement.展开更多
Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.D...Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.展开更多
The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,...The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,this paper develops a three-dimensional discretized dynamic radiation transfer model based on the blade shape of the turbine.The relationship between the radiation angle coefficient of the surrounding blades and the rotation angle of the blade under test is analyzed.The radiation angle coefficient is calculated using the triangular element method,and temperature inversion is performed based on the effective emissivity to compute the measurement error.The results show that under dynamic high temperature conditions,the temperature measurement error caused by reflection at the selected 60%leaf height point varies with the rotation angle,and the maximum reaches 25.58K.The angular coefficient exhibits periodic fluctuations with changes in rotation angle,and the maximum effective emissivity increases as the rotation angle increases.As the blade height increases,the impact of reflected radiation on radiometric temperature measurement errors shows a decreasing trend.This study provides a reference for radiation thermometry in dynamic high-temperature environments.展开更多
With the development of wireless communication,the fifth generation mobile communication technology(5G)has emerged as a hot topic in highspeed railway communication system and has moved towards industrial application....With the development of wireless communication,the fifth generation mobile communication technology(5G)has emerged as a hot topic in highspeed railway communication system and has moved towards industrial application.Investigating the radio propagation characteristics in 5G high-speed train(HST)scenarios is essential for enhancing wireless coverage and overall system performance.We propose a novel 5G passive sounding scheme to extract channel impulse responses(CIRs)using channel state information reference signals(CSI-RS)from the target 5G base station(BS).Detailed procedures for timefrequency synchronization,CSI-RS detection and extraction are presented through simulations.Through the laboratory work involving absolute power calibration,phase coherence calibration and power delay profile(PDP)validation,we validate the accuracy and performance of the developed platform.Furthermore,a measurement campaign was conducted in HST scenarios encompassing both residential and undeveloped areas.The path loss(PL)model and the channel characteristics including stationarity interval(SI),multipath components(MPCs),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread and received correlation coefficients are analyzed and fitted.The estimated channel characteristics and the statistical model presented in this paper will contribute to the research on HST radio propagation and the development of 5G railway communication systems.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 52172259)the National Key Research and Development Program of China (Grant Nos. 2021YFA0718700 and 2022YFB3803900)the Fundamental Research Funds for the Inner Mongolia Normal University (Grant No. 2022JBTD008)。
文摘The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics.
基金Supported by the High-Level Chinese Medicine Key Discipline Construction Project,No.zyyzdxk-2023005Capital’s Funds for Health Improvement and Research,No.2024-1-2173+2 种基金National Natural Science Foundation of China,No.82474419 and No.82474426Beijing Municipal Natural Science Foundation,No.7232272Beijing Traditional Chinese Medicine Technology Development Fund Project,No.BJZYZD-2023-12.
文摘BACKGROUND Clinically significant portal hypertension(CSPH)is a crucial prognostic deter-minant for liver-related events(LREs)in patients with compensated viral cir-rhosis.Liver stiffness measurement(LSM)-related markers may help to predict the risk of LREs.AIM To evaluate the value of LSM and its composite biomarkers[LSM-platelet ratio(LPR),LSM-albumin ratio(LAR)]in predicting LREs.METHODS This study retrospectively enrolled compensated viral cirrhosis patients with CSPH.The Cox regression model was employed to examine the prediction of LSM,LPR,and LAR for LREs.The model performance was assessed through receiver operating characteristic,decision curve,and time-dependent area under the curve analysis.The Kaplan-Meier curve was used to evaluate the cumulative incidence of LREs,and further stratified analysis of different LREs was per-formed.RESULTS A total of 598 patients were included,and 319 patients(53.3%)developed LREs during follow-up.Multivariate proportional hazards modeling demonstrated that LSM,LPR,and LAR were independent predictors of LREs.LPR had better performance in predicting LREs than LAR and LSM(area under the curve=0.780,0.727,0.683,respectively,all P<0.05).The cumulative incidence of LREs in the high-risk group were significantly higher than that in the low-risk group(P<0.001).Among the different LREs,LPR was superior to LSM and LAR in predicting liver decompensation,while the difference in predicting hepatocellular carcinoma and liver-related death was relatively small.CONCLUSION LPR is superior to LSM and LAR in predicting LREs in compensated viral cirrhosis patients with CSPH,especially in predicting liver decompensation.
基金supported by the National Science Fund for Distinguished Young Scholars,China(No.51625501)Aeronautical Science Foundation of China(No.20240046051002)National Natural Science Foundation of China(No.52005028).
文摘Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.
文摘Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375414,52075100)Shanghai Science and Technology Committee Innovation Grant of China(Grant No.23ZR1404200).
文摘In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices.
基金supported by the Fundamental Research Funds for the Central Universities(20822041H4082)。
文摘Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hindered this progress.In this work,we present a systematic protocol for electrochemical measurements to thoroughly evaluate the activity and stability of OER electrocatalysts.We begin with a detailed introduction to constructing the electrochemical system,encompassing experimental setup and the selection criteria for electrodes and electrolytes.Potential contaminants originating from electrolytes,cells,and electrodes are identified and their impacts are discussed.We also examine the effects of external factors,such as temperature,magnetic fields,and natural light,on OER measurements.The protocol outlines operational mechanisms and recommended settings for various electrochemical techniques,including cyclic voltammetry(CV),potentiostatic electrochemical impedance spectroscopy(PEIS),Tafel slope analysis,and pulse voltammetry(PV).We summarize existing evaluation methodologies for assessing intrinsic activities and long-term stabilities of catalysts.Based on these discussions,we propose a comprehensive protocol for evaluating OER electrocatalysts’performance.Finally,we offer perspectives on advancing OER catalysts from laboratory research to industrial applications.
基金supported by the National Natural Science Foundation of China (Nos. 62276204, 62203343)。
文摘This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.
基金Project supported by the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20233001 and BK20243060)the National Natural Science Foundation of China(Grant No.62288101)。
文摘The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.
文摘Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFC2201001)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)+1 种基金the National Natural Science Foundation of China(Grant Nos.12105373,12105374,and 11927812)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2402105).
文摘Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion(In-FEEP)micro-thruster using three methods based on a pendulum:direct thrust measurement,indirect plume momentum transfer and beam current diagnostics.The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator,achieving a resolution better than 0.1μN.Key performance factors such as ionization and plume divergence of ejected charged particles were also examined.The study reveals that the high applied voltage induces significant electrostatic interference,becoming the dominant source of error in direct thrust measurements.Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously,showing strong agreement within a deviation of less than 0.2N across the operational thrust range.The results from all three methods are consistent within the error margins,verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.
基金National Key Research and Development Program of China(2021YFA1501302)the National Natural Science Foundation of China(22121004,22122808)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities(BP0618007)for financial supportsupported by the XPLORER PRIZE.
文摘Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.
基金supported by the Chinese Scholarship Council under Grant 202106910006.
文摘Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002133,12372109,and 11972171)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20200590 and BK20180031)+4 种基金the Fundamental Research Funds for the Central Universities(Grant No.JUSRP121040)the National Key R&D Program of China(Grant No.2023YFB4605101)the 111 project(Grant No.B18027)the Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education(Grant No.NJ2020003)the Sixth Phase of Jiangsu Province“333 High Level Talent Training Project”Second Level Talents.
文摘Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials.
基金supported by National Natural Science Foundation of China(No.62006092)Natural Science Research Project of Anhui Educational Committee(No.2023AH030081)+1 种基金2023 New Era Education Provincial Quality Engineering Project(Graduate Education)(No.2023cxcysj103)2024 New Era Education Provincial Quality Engineering Project(Graduate Education)。
文摘Lactate,as a metabolite,plays a significant role in a number of fields,including medical diagnostics,exercise physiology and food science.Traditional methods for lactate measurement often involve expensive and cumbersome instrumentation.This study developed a portable and low-cost lactate measurement system,including independently detectable hardware circuits and user-friendly embedded software,computer,and smartphone applications.The experiment verified that the relative error of the detection current in the device circuit was less than 1%.The electrochemical performance was measured by comparing the[Fe(CN)_(6)]^(3−)/[Fe(CN)_(6)]^(4−)solution with the desktop electrochemical workstation CHI660E,and a nearly consistent chronoamperometry(CA)curve was obtained.Two modified lactate sensors were used for CA testing of lactate.Within the concentration range of 0.1 mmol·L^(−1)to 20 mmol·L^(−1),there was a good linear relationship between lactate concentration and steady-state current,with a correlation coefficient(R2)greater than 0.99 and good repeatability,demonstrating the reliability of the developed device.The lactate measurement system developed in this study not only provides excellent detection performance and reliability,but also achieves portability and low cost,providing a new solution for lactate measurement.
基金the financial supports from National Key R&D Program of China(No.2022YFB3403301)the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(No.52311530080)。
文摘Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.
文摘The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,this paper develops a three-dimensional discretized dynamic radiation transfer model based on the blade shape of the turbine.The relationship between the radiation angle coefficient of the surrounding blades and the rotation angle of the blade under test is analyzed.The radiation angle coefficient is calculated using the triangular element method,and temperature inversion is performed based on the effective emissivity to compute the measurement error.The results show that under dynamic high temperature conditions,the temperature measurement error caused by reflection at the selected 60%leaf height point varies with the rotation angle,and the maximum reaches 25.58K.The angular coefficient exhibits periodic fluctuations with changes in rotation angle,and the maximum effective emissivity increases as the rotation angle increases.As the blade height increases,the impact of reflected radiation on radiometric temperature measurement errors shows a decreasing trend.This study provides a reference for radiation thermometry in dynamic high-temperature environments.
基金supported by Fundamental Research Funds for the Central Universities(No.2024YJS078)the National Natural Science Foundation of China(No.62341127,62221001 and 62171021)+1 种基金the Fundamental Research Funds for the Natural Science Foundation of Jiangsu Province,Major Project(No.BK2021200)the Key Research and Development Program of Zhejiang Province(No.2023C01003)。
文摘With the development of wireless communication,the fifth generation mobile communication technology(5G)has emerged as a hot topic in highspeed railway communication system and has moved towards industrial application.Investigating the radio propagation characteristics in 5G high-speed train(HST)scenarios is essential for enhancing wireless coverage and overall system performance.We propose a novel 5G passive sounding scheme to extract channel impulse responses(CIRs)using channel state information reference signals(CSI-RS)from the target 5G base station(BS).Detailed procedures for timefrequency synchronization,CSI-RS detection and extraction are presented through simulations.Through the laboratory work involving absolute power calibration,phase coherence calibration and power delay profile(PDP)validation,we validate the accuracy and performance of the developed platform.Furthermore,a measurement campaign was conducted in HST scenarios encompassing both residential and undeveloped areas.The path loss(PL)model and the channel characteristics including stationarity interval(SI),multipath components(MPCs),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread and received correlation coefficients are analyzed and fitted.The estimated channel characteristics and the statistical model presented in this paper will contribute to the research on HST radio propagation and the development of 5G railway communication systems.